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Abstract

We give a full analytic characterization of a large class of sticky-price models where the
firm’s price setting behavior is described by a generalized hazard function. Such a function
allows for a vast variety of empirical hazards to be fitted. This setup is microfounded by
random menu costs as in Caballero and Engel (1993) or, alternatively, by information frictions
as in Woodford (2009). We establish two main results. First, we show how to identify all the
primitives of the model, including the distribution of the fundamental adjustment costs and
the implied generalized hazard function, using the distribution of price changes. Second, we
derive a sufficient statistic for the aggregate effect of a monetary shock: given an arbitrary
generalized hazard function, the cumulative impulse response of output to a once-and-for-all
monetary shock is proportional to the ratio of the kurtosis of the steady-state distribution
of price changes over the frequency of price adjustment. We prove that Calvo’s model yields
the upper bound and Golosov and Lucas’s model the lower bound on this measure within the
class of random menu cost models.
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1 Introduction and Summary of Results

Firms’ price setting decisions are central to the analysis of nominal shocks. Alternative modeling

of such decisions leads to substantively different implications for the relevance, or otherwise the ir-

relevance, of price stickiness. Understanding the implications of different price setting mechanisms

is thus important, but sharp analytical results are difficult to obtain since the analysis involves the

dynamic behavior of a cross section of heterogenous firms. Seminal contributions to this problem

were given by Caplin and Spulber (1987); Caplin and Leahy (1991) for models where firms’ only

motive for price changes are aggregate nominal shocks. The growing micro evidence spawned by

the work of Bils and Klenow (2004) has given rise to a new generation of models where price

setting decisions are dominated by firm-level idiosyncratic shocks. In this paper we present sharp

analytic results that characterize the propagation of monetary shocks in these new models.

We employ a setup that describes the firm’s price setting decision through a “generalized

hazard function”, a function that relates the firm’s price adjustment probability to its own state.

Such a function provides a tractable description of the firm’s behavior allowing us to study a

vast variety of price setting models within a single framework. The notion of a generalized hazard

function, and its derivation from first principles, were developed in seminal papers by Caballero and

Engel (1999, 2007) and Dotsey, King, and Wolman (1999), and later revisited using information

theoretical foundations by Woodford (2009) and Costain and Nakov (2011b). Compared to the

workhorse Calvo (1983) model, where the adjustment probability is constant, a generalized hazard

function Λ(x) allows it to depend on the state x, the firm’s desired adjustment, such as the markup

deviation from the desired level. Such state dependence is appealing theoretically, see e.g. Barro

(1972); Sheshinski and Weiss (1977); Dixit (1991); Golosov and Lucas (2007), and has been found

to be relevant empirically, see e.g. Fougere, Le Bihan, and Sevestre (2007); Dias, Marques, and

Santos Silva (2007); Eichenbaum, Jaimovich, and Rebelo (2011); Gautier and Saout (2015).1

The setup nests a broad class of sticky price models where the firm’s pricing decisions is

represented by a symmetric generalized hazard function Λ (x). The symmetry arises since we

1Several authors have employed the generalized hazard function in applications and empirical work. For recent
applications see e.g. Costain and Nakov (2011a); Carvalho and Kryvtsov (2018); Sheremirov (2019); for empirical
work see e.g. Berger and Vavra (2018); Petrella, Santoro, and de la Porte Simonsen (2018), and for related theoretical
work Baley and Blanco (forthcoming).
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focus on economies where the idiosyncratic state is driftless, an accurate benchmark for low-

inflation economies.2 A large number of models are nested by this framework, including the “polar”

versions: the canonical Calvo model with a constant hazard Λ (x) = λ and x is unbounded, and the

Golosov and Lucas (2007) model with x bounded by the adjustment threshold ±X and the hazard

equals zero on |x| ∈ (0, X) with an “infinite hazard” at the adjustment thresholds.3 Intermediate

cases cover the so called Calvo-plus model by Nakamura and Steinsson (2010), the random menu

cost problem of Dotsey and Wolman (2020), as well as the cases discussed above which explicitly

use a generalized hazard function.

We employ this setup to prove two main analytical results that give a thorough understanding

of the workings of sticky price models, their mapping to the data, and the propagation of monetary

shocks. First we show how to identify all primitives of the model from readily available data. We

establish an invertible mapping between the fundamental cost of price adjustment (menu cost or

information cost) and the “reduced form” generalized hazard function. We consider two alternative

foundations underlying this mapping. One, introduced in the seminal work by Caballero and Engel

(1993b), assumes the firm can change its price upon paying a fixed (menu) cost ψ that is drawn

every period from an unrestricted distribution of costs G(ψ). We prove that the mapping between

any given menu cost distribution G(ψ) and the generalized hazard function Λ(x) is invertible.

This means that any non-decreasing generalized hazard function can be rationalized by a unique

choice of the distribution of the random fixed costs G(ψ). While the non-decreasing nature of

the generalized hazard function was established by Caballero and Engel (1993a), we prove the

invertibility of the mapping and give an explicit formula to recover G(ψ) from any Λ(x) non-

decreasing in |x|. We also provide a similar result for a foundation where the firm selects the

“probability” of adjustment λ in every period, subject to a cost c(λ).4 We show that every non-

decreasing generalized hazard rate Λ(x) can be rationalized by a convex cost function c(λ).

2See Section 6 for an extension to the case of non-negligible inflation. See proposition 7 in Alvarez, Le Bihan,
and Lippi (2016) for a result explaining why inflation has no first order effects on the propagation of monetary
shocks in this class of models.

3The infinite hazard at the threshold should be thought of as an approximation of the behaviour at an sS barrier.
In our results we make the different behaviour precise. In Proposition 3 we provide a rigorous approximation of the
behaviour at barrier as a very high hazard rate to justify this analogy.

4This is a simplified version of Woodford (2009), where the cost is modeled in a rational inattention framework.
See also Costain and Nakov (2011b) for a sticky price model where firms must pay a cost to increase the probability
of a price change.
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We complete the mapping between theory and data by showing how to use the (observed) dis-

tribution of price changes Q(∆p) and frequency of price changes Na to fully identify the generalized

hazard function Λ(x).5 A price change ∆p = −x is chosen by a firm with desired adjustment x

that is given the option to adjust. A straightforward relation links the density of price changes

q(−x) to the hazard function and the cross-sectional distribution of desired adjustments, f(x),

namely q(−x)Na = Λ(x)f(x). Previous contributions such as Berger and Vavra (2018) retrieve

f(x) by postulating a parametric form for Λ(x) and then using this relation. We show that, sur-

prisingly to us, Λ(x) and f(x) are both fully encoded in q(∆p) and Na, and that it is possible to

identify both functions using the distribution and frequency of price changes alone. The reason is

that, besides q(−x)Na = Λ(x)f(x), the functions Λ(x) and f(x) must jointly obey a Kolmogorov

forward equation, a statistical relation that naturally links the existing distribution of price gaps

to the probability of changing the gap. We derive the expression to retrieve f(x) and Λ(x) from

q(∆p) and Na in closed form, effectively solving two equations for two unknowns.6

Using our first result, we can then recover the entire distribution of random menu cost G(ψ).

We propose an estimator for such distributions that is consistent with the theory and allows for

unobserved heterogeneity among products. To illustrate our procedure we use publicly available

scraped-price data by Cavallo (2015) for the US, estimate the underlying distribution of price

changes, measure its kurtosis, and recover Λ(x), f(x), and G(ψ). Interestingly, accounting for

measurement error and aggregation, and correcting for unobserved heterogeneity, we find that the

data are roughly consistent with a quadratic hazard function, which implies a value of kurtosis

around 2, much smaller than those estimated in the previous literature. The latter result will

matter for the propagation of nominal shocks. Furthermore, we define a statistic C (for “Calvo-

ness”) that measures the fraction of price changes happening independently of the state of the

firm. Using our characterization of the relationship between the observed distribution of price

changes and the generalized hazard rate, we show that C is proportional to q(0), the density of

price changes near zero. We estimate C in Cavallo’s (2015) data set and find it to be about 6%, i.e.

5Such data have been heavily used to discipline sticky price models over the past two decades, see e.g. Bils and
Klenow (2004); Klenow and Malin (2010); Cavallo and Rigobon (2016).

6The recovery of the function f(x) from observables relates to the work by Baley and Blanco (forthcoming) who
obtain all the moments of f(x) even in the presence of drift and asymmetries in a simple setup a la Nakamura and
Steinsson (2010).
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about 94% of price changes show some state dependence. While we focus on the case of zero drift

in the state, which is the one applicable to low-inflation countries, all the main results of this part

hold in the presence of an arbitrary drift, i.e. in the presence of non-zero steady state inflation, as

shown in Section 6. Besides steady state inflation in price setting models, non-zero drift is relevant

in other problems, such as depreciation rates on physical assets.

The second main result of the paper gives a sufficient statistic for the aggregate effect of a

monetary shock. We establish that the cumulative impulse response (CIR) of output to a once-and-

for-all monetary shock in any model characterized by a generalized hazard function Λ(x) is a simple

function of two steady state statistics: the Kurtosis of the distribution of price changes divided

by six times the frequency of price changes. The CIR, namely the area under the output impulse

response function, is a convenient summary measure of the non-neutrality of monetary shocks.

The notion of CIR was introduced in Alvarez, Le Bihan, and Lippi (2016), which showed that

the “kurtosis result” holds for a Calvo-plus model (and multi-product firms), a class that implies

a constant hazard function Λ(x) = λ in the inaction region. Baley and Blanco (forthcoming)

extended this result to the Nakamura and Steinsson (2010) setup. Alvarez, Lippi, and Paciello

(2016) showed that the kurtosis result holds in a large class of rational inattention models, as

proposed by Reis (2006), which are purely time dependent. This paper embeds, and provides

a substantive generalization, of the previous results: we establish that the kurtosis result holds

for any symmetric Λ(x) function, allowing for both finite and infinite boundaries of the inaction

region. This includes decreasing or non-monotone hazard functions (which are not rationalized

by random menu cost models), and hazards with discontinuities corresponding to mass points in

the distribution of menu cost. This new result provides a rigorous (negative) answer to Dotsey

and Wolman (2020) who conjecture, based on numerical simulations of a different model, that the

kurtosis result may fail to apply in a model with random menu costs.7

Our analysis shows that within the class of non-decreasing generalized hazard functions the

largest Kurtosis is six, attained by the constant hazard rate model, like the pure Calvo (1983)

7One reason the “kurtosis result” fails in their numerical analysis is likely a fraction of firms with flexible prices.
Heterogeneity across firm types makes it essential to properly aggregate. Failing to do so will obfuscate the result,
which holds for each firm’s type. We analyze the case with heterogenous firms in equation (49) and discussion
around it.
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case. The smallest, equal to one, corresponds to the pure menu cost model of Golosov and Lucas

(2007). This result is interesting because non-decreasing hazard rates describe the entire set of

models with random menu costs and information gathering, and thus it establishes Calvo as an

upper bound within this broad class. For a Kurtosis higher than six one would need to come up

with an economic foundation for a (locally) decreasing hazard function.

Structure of the paper. The next section provides two foundations for the generalized hazard

function. In the first one (Section 2.1), firms choose when to change prices subject to random

menu costs, distributed according to the CDF G. In the second one (Section 2.2), firms choose

the intensity with which they can change prices, subject to a cost function c. In both models,

the optimal decision rule is summarized by a generalized hazard function Λ. We show that in

both models, given Λ, one can recover the primitive cost, either G or c (Theorem 1). Section 3

characterizes the steady-state statistics of a model where the firms’ decisions follow a generalized

hazard function. Section 4 shows how to recover Λ starting from the observed distribution of the

size of price changes (Theorem 2) and presents an application using Cavallo’s (2015) data set.

Section 5 discusses the propagation of a once-and-for-all small aggregate shock in an economy

characterized by a generalized hazard function, and proves that its effect can be summarized by

a simple sufficient statistic (Theorem 3). In Section 6 we extend the random menu cost model to

accommodate inflation and derive the inverse mapping for that case (Theorems 4 and 5). Section 7

discusses scope and limitations of the results, and the relation with the recent literature. Section 8

concludes discussing extensions and future work. The proofs of the theorems are in Appendix A,

the proofs of the remaining propositions are in Appendix B. Several extensions are developed in

the appendices.

2 Foundations of the Generalized hazard function Λ(x)

The generalized hazard function is a building block of several macro models featuring sticky prices.

It is a function that maps the state of the firm, x, e.g. the deviation of the current markup from

the profit maximizing one, into the likelihood of a price adjustment Λ(x). Such a function is
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appealing to scholars because it allows for substantive flexibility in fitting cross-sectional data on

price setting behavior while, at the same time, having explicit microeconomic foundations. This

section presents two alternative settings for such foundations, and provides an invertible mapping

that allows one to recover the foundations from a given hazard function.

Our first setup uses a random menu cost model, first proposed by Caballero and Engel (1993a)

and elaborated in Caballero and Engel (1999, 2007). A particular case, the Calvo-plus model, was

analyzed by Nakamura and Steinsson (2010). The second setup relates to models of inattention as

in Woodford (2009), where firms choose the arrival rate of opportunities to change prices.8

Both setups feature a firm that maximizes the present discounted value of a per-period profit

function given by −Bx2, a second order approximation of the profit function, where x is the price

gap, and the parameter B > 0 measures the curvature of the profit function. The two setups differ

in the friction that prevents the firm from setting x = 0 at all times. In the first, the friction is due

to the presence of random fixed costs of price adjustment; in the second the friction is due to an

information cost. If prices are not changed, the price gap x evolves as a standard Brownian Motion

with zero drift and variance σ2. The lack of drift indicates that the economy under consideration

has no inflation.9

2.1 The Random Menu Cost Model

The Calvo-plus model supplements the traditional Calvo model with the possibility that the firm

can change its price by paying a fixed menu cost at any time. The advantage of this model is

to eliminate a long tail of delayed adjustments that seems counterfactual. The generalized model

allows the firm to draw a fixed menu cost ψ from a distribution G at random times – arriving at

a Poisson rate κ > 0.

As in Caballero and Engel (1993a), we call the difference between the current price of the

8In Woodford (2009) the form of the firm’s problem and the specification of c(·) are derived assuming constraints
on information flows.

9See The Online appendix B in Alvarez and Lippi (2014) for a microfoundation of this model. Nakamura et al.
(2018) and Alvarez, Beraja, Gonzalez-Rozada, and Neumeyer (2019) focus on a models with zero inflation and argue
that they provide an accurate approximation for economies where inflation is low, as the effects on decision rules
are of second order when inflation is close to zero for simple sS models. Moreover, these papers provides evidence
consistent with this behaviour using variation on inflation rates close to zero for US and Argentina.
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firm and its ideal price a “price gap”. We will specify the process for the demand and cost of

the firm, so that the price gap is the state of the firm’s problem. The menu costs drawn by the

firm can be zero or strictly positive. If the cost is zero the firm changes its price to the ideal one

(i.e. it “closes its price gap”). If the firm draws a strictly positive cost, it will either ignore it

or change its price depending on the value of the “price gap” relative to the realization of the

fixed cost. In particular, the optimal decision rule will be characterized by a threshold rule that

gives the maximum adjustment cost that the firm is willing to pay for adjustment. For all fixed

costs smaller than the threshold the firm changes its price, while for larger costs it keeps the price

unchanged.

We also allow the firm to have a price change at any time by paying a (relatively large) fixed

cost, which we denote by Ψ > 0 and refer to as the “deterministic fixed cost”. If Ψ =∞, then the

firm has no such alternative. We can write the value function of the firm, v(x), as:

rv(x) = min

{
Bx2 +

σ2

2
v′′(x) + κ

∫ Ψ

0

min
{
ψ + min

z
v(z)− v(x) , 0

}
dG(ψ) , r

(
Ψ + min

z
v(z)

)}

Two points are worth making. First, given the symmetry of Bx2, the value function is symmetric

around x = 0.10 A proof can be constructed by a simple guess and verify argument. Second, if

Ψ = ∞, there is no second branch in the Bellman equation. Note that as long that either r > 0

and/or that κ > 0, the value function v is finite and well defined in the case of Ψ =∞.

The term minz v(z) is the value right after adjustment, and given the symmetry of the return

function, we have v(0) = minz v(z). Thus we can simply write that for all x

rv(x) = min

{
Bx2 +

σ2

2
v′′(x) + κ

∫ Ψ

0

min {ψ + v(0)− v(x) , 0}dG(ψ) , r (Ψ + v(0))

}

For the case where Ψ <∞ we can use that the optimal decision rule has a threshold X <∞ such

10This also relies on the the assumption that there is no drift in the uncontrolled process for x. The case with a
non-zero drift is treated in Section 6.
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that if |x| ≥ X the firm pays the fixed cost Ψ. Thus we can write

rv(x) =


Bx2 + σ2

2
v′′(x) + κ

v(x)−v(0)∫
0

ψdG(ψ) + κ [v(0)− v(x)]G (v(x)− v(0)) , |x| ≤ X

r (v(0) + Ψ) , |x| > X

(1)

Note that we can define the threshold function x̄ : [0,Ψ]→ [0, X] as solving

v(x̄(ψ)) = v(0) + ψ for all ψ ∈ [0,Ψ]

It is easy to see that v is increasing in |x|, since the period cost Bx2 is strictly increasing in |x|,

the uncontrolled process is a brownian motion, and the adjustment cost is independent of x. Since

v is strictly increasing in [0, X], then x̄′(ψ) = 1/v′(x̄(ψ)) > 0. We can let the function ψ̄(x) be the

inverse of x̄(ψ).

For simplicity, in the characterization of the problem that follows we will assume a distribution

function G with a continuous density. We require G to be continuously differentiable at all points,

with the possible exception of ψ = 0. For completeness, Appendix L considers the case of a discrete

distribution G, where ψ takes finitely many values.11 In either case we have the following smooth

pasting and optimal return point conditions:

v′(−X) = v′(X) = v′(0) = 0

We are now ready to define the generalized hazard rate, Λ : (−X,X) → R+, which gives the

probability (per unit of time) that a firm with x ∈ (−X,X) will change its price. It is defined

by the optimal decision rule, or the value function, as well the Poisson arrival rate κ > 0 and the

distribution of fixed cost G:

Λ(x) = κG (v (x)− v (0)) for all x ∈ (−X,X) . (2)

11The two cases differ on whether x̄(·) is a continuous function, and on whether the value function v(·) is twice
differentiable everywhere or it has jump discontinuities on finitely many values. Indeed in the latter case we need
to rewrite the value function since v′′(x) is not defined at all points.
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The function Λ is symmetric around x = 0 and weakly increasing in |x|. It is continuous at x if G

is continuous at ψ = v (x) − v (0), and bounded above by κ. While the function Λ is not defined

at x = ±X, we abuse notation and let Λ(X) = limx→X Λ(x) = κG (Ψ) = κ.

2.1.1 Rationalizing a given generalized hazard Λ

We next show that any increasing, differentiable, symmetric and bounded hazard rate Λ can be

rationalized as the solution to the firm problem in equation (1) by a unique menu cost distribution

G and two parameters {κ,Ψ}. Our proof is constructive: we provide an algorithm to compute

{G, κ,Ψ} from Λ, proving existence and uniqueness. Indeed G is obtained by solving a linear

ordinary differential equation of the second order. Section 2.2 describes an alternative problem of

the firm that also generates a non-decreasing generalized hazard function. We find this interesting

because it allows us to relate to setups costly information collection, as in Woodford (2009).

The main result in this section shows how to recover the distribution G, with a density G′ = g,

given Λ and the values of three parameters: r, B, and σ2. Three remarks are in order. First, the

values of the fixed costs ψ are measured relative to B, and thus the optimal decision rules depend

only on the distribution of ψ/B. Second, we show that σ2, while in principle unobservable, is

encoded in the frequency and variance of price changes. Thus, once Λ is given, we can recover

all the parameters of the firm’s problem, except the discount rate r. Third, while in this section

we consider the case where G is differentiable for ψ > 0 to simplify the exposition, Appendix L

considers discrete distributions of costs which imply an hazard Λ that is a step function. In this

case we can recover G starting from Λ by solving a system of linear equations.

Assume the firm faces a distribution G of the menu costs with a density g for all ψ > 0, and

possibly a mass point at ψ = 0. In this case its Bellman equation solves

rv(x) = Bx2 +
σ2

2
v′′(x) +

v(x)−v(0)∫
0

κ[ψ + v(0)− v(x)]g(ψ)dψ + κ[v(0)− v(x)]G(0) (3)

for all x ∈ [−X, 0], and we can use the symmetry of v to define it as v(x) = v(−x). The boundary

conditions are v′(X) = 0 and v(X) = v(0)+Ψ, the smooth pasting and value matching. Note that
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in the interior (0, X) the function v solves a non-linear ordinary differential equation.

Before the main result on the existence of a unique invertible mapping between Λ and G, we

state an intermediate result that provides a solution for the value function v and a new auxiliary

function that will be used to solve the general problem. Consider the function Λ describing the

probability per unit of time of a price adjustment if the price gap is |x| < X. We have the following:

Lemma 1. Assume Λ : [−X,X] be a positive function. Define u as the solution of the linear

ordinary differential equation

[r + Λ(x)]u(x) = 2Bx+
σ2

2
u′′(x) for x ∈ [0, X] (4)

with boundary conditions u(0) = u(X) = 0. The solution for u exists and it is unique. If Λ is the

GHF corresponding to the value function v, then

v(x) = u′(0)
σ2

2r
+

∫ x

0

u(z)dz for x ∈ [0, X] . (5)

The auxiliary function u can readily be used to compute the value function and, as shown

below, to characterize the distribution of costs that rationalizes the postulated hazard function.

We now state the main result of this section:

Theorem 1. Fix a discount rate r > 0, the curvature of the profit function B > 0, the

volatility of shocks σ > 0, and the threshold X, with X ∈ R+ ∪ {+∞}. Consider a function

Λ(·) : (−X,X) → R+ that is symmetric around zero, increasing in |x|, differentiable on (0, X),

and bounded. There exist real numbers {κ > 0,Ψ > 0}, both positive, and a cost distribution

G(·) : [0,Ψ]→ [0, 1] with a density g(·), continuous on (0,Ψ), and possibly a mass point G(0) > 0,

that uniquely rationalizes Λ as the generalized hazard function of the value function that solves

10



equation (3). Using the auxiliary function u in Lemma 1 and U(x) =
∫ x

0
u(z)dz for x ∈ (0, X),

κ = lim
x↑X

Λ(x) , Ψ = U(X) , G(0) =
Λ(0)

κ
(6)

g (U(x)) =
Λ′(x)

u(x)κ
for all x ∈ (0, X) with ψ = U(x) (7)

The theorem allows us to retrieve the primitives of a fully specified price setting problem starting

from any given non-decreasing hazard function Λ. Note that whenever Λ(0) > 0 the model implies

a mass point at ψ = 0. Intuitively, rationalizing a non-zero probability of adjustment when the

gap is small requires a mass point of zero menu costs. Also note that g(·) > 0 requires Λ′(·) > 0.

See Section 6 for an identification result that extends Theorem 1 to the case of drift on the state,

i.e. to non-zero steady state inflation.

Application: a quadratic hazard function. We conclude with an application to a quadratic

generalized hazard function Λ(x) = Λ0 + Λ2x
2 where Λ0 ≥ 0,Λ2 ≥ 0 and |x| ∈ [0, X].12 We can

solve for the auxiliary function u(x) using Lemma 1. This yields a polynomial:

u(x) =
∞∑
i=0

a2i+1 x
2i+1

satisfying the ODE in equation (4) and the boundary conditions u(0) = u(X) = 0. Straightforward

application of the method of undetermined coefficients gives the recursive relation

a3 =
(r + Λ0)a1 − 2B

3σ2
, a2i+1 =

(r + Λ0)a2i−1 + Λ2a2i−3

σ2 i(2i+ 1)
for i = 2, 3, ...

All coefficients are determined as a function of a1, which is pinned down by the boundary condition

u(X) = 0. Application of Theorem 1 gives U(x) =
∑∞

i=1
a2i−1

2i
x2i, the value function v(x) =

12If Λ is symmetric and smooth, it admits a quadratic approximation close to zero. This feature, mentioned by
Caballero and Engel (2007) and Berger and Vavra (2018), makes quadratic generalized hazard functions especially
appealing. In Appendix H we show that if Λ does not admit a quadratic approximation around x = 0, the underlying
density g exhibits non-generic behavior.
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a1
σ2

2r
+ U(x), the arrival rate κ = Λ0 + Λ2X

2, the distribution function G(ψ) with

G(0) =
Λ0

Λ0 + Λ2X2

Note that if Λ0 > 0 the proposition implies a mass point at ψ = 0. For |x| ∈ [0, X], the proposition

gives the menu cost density function

g(U(x)) =
2Λ2x

κu(x)
(8)

The limit of the density is finite and positive, limψ↓0 g(ψ) = 2Λ2

κa1
. This happens because v(x) is

smooth and symmetric, so u(x) = v′(x) admits a linear approximation close to zero.

2.2 An Optimal Adjustment Intensity Model

In this section we describe an alternative setup that yields a similar mapping between an underlying

cost function and the generalized hazard. Now the firm does not face random menu cost. Instead,

it directly controls the arrival rate of a free opportunity to change prices. At each moment the firm

must pay a flow cost c(`) to obtain an arrival rate `. We assume that the flow cost is increasing

and convex. This will give rise to the choice of the optimal rate of price changes as a function of

the price gap, leading to a generalized hazard function Λ. As in the previous case, we also allow

the firm to pay a deterministic menu cost Ψ to change its price with certainty. This Ψ will give

rise to a barrier X, and we allow Ψ =∞, in which case this will never be used, so X =∞.

The main result of this section is that, analogously to the previous setup, any increasing

symmetric function Λ can be rationalized by some increasing and convex cost function c. One

difference between the two setups is that the resulting Λ in this setup does not need to be bounded

above. This justifies the use of some of our examples later on. Additionally, this setup imposes

fewer constraints on the tails of the implied distribution of price changes.

The firm’s problem is:

rv(x) = min

{
Bx2 +

σ2

2
v′′(x) + min

`≥0
{` (v(0)− v(x)) + c(`)} , r (Ψ + v(0))

}
(9)
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We assume that the cost function c : R+ → R+ is increasing and convex in `, and that c(`)→∞

as ` → ∞. We can also allow c to have finitely many flat segments, and do not assume that c

is continuously differentiable. The possibility of kinks in c may be needed to rationalize constant

segments on Λ. Allowing for flat segments in c implies that the minimizer `∗ may be an interval

for some x, which we can represent with a discontinuity in Λ at that value of x. We can now state

a result that echoes the one in Theorem 1:

Proposition 1. Fix a discount rate, curvature, variance, and a value of the threshold (r, B, σ2, X),

all positive. Let Λ(·) : (−X,X)→ R+. Assume that Λ(·) is symmetric around zero, Λ(x) = Λ(−x),

increasing in |x|, and differentiable on (0, X). Then, there exists an increasing convex cost func-

tion c(·) : R+ → R+ and a real number Ψ that rationalize the postulated decision rule as in

equation (9). Moreover, the marginal cost c′(·) can be uniquely constructed by solving a second

order linear ordinary differential equation.

Appendix G provides more details on the solution of this model. Note that observation on the

frequency and size of price changes cannot in general distinguish between the random menu cost

model of Section 2.1 and the optimal intensity of price adjustment of this section. In this sense,

the generalized hazard function Λ is a more fundamental object. Furthermore, as explained above,

the model of this section allows a slightly larger set of generalized hazard functions Λ.

3 Steady State observable statistics

In this section we show how to use the hazard function Λ to derive several observable statistics

produced by our model in the steady state. In particular, we solve for the implied invariant

distribution of price gaps, with density f(x), the number of price changes per unit of time, Na,

and the distribution of price changes, with density q(∆p). We focus on two moments of this

distribution, the variance and the Kurtosis, denoted V ar(∆p) and Kurt(∆p). The setup allows

for Ψ ∈ R̄+ ≡ R+ ∪ {∞}. If Ψ is finite then the inaction range is bounded, X < ∞. Otherwise,

the support is unbounded, X = ∞. Both cases are encompassed by the analysis of this section.

The starting point of this section is the function Λ that summarizes the firm’s optimal decisions:

13



Assumption 1. Let Λ : (−X,X)→ R+, be non-negative, piece-wise continuous, symmetric, i.e.

Λ(x) = Λ(−x) for all x, with at most finitely many discontinuities xk ≥ 0, and let J ≡ {xk}. If

X =∞, we assume that there is a λ > 0 and 0 < xH <∞ such that Λ(x) ≥ λ for all |x| > xH .

Note that if Λ is the solution to the firm problem studied in Section 2, then Λ(x) must be

weakly increasing for x > 0, although Assumption 1 does not impose that.

Next we define the invariant distribution of price gaps, with density f(·) : (−X,X) → R+.

Importantly, f must be continuous everywhere, continuously differentiable at |x| ∈ (0, X), twice

continuously differentiable at all |x| ∈ (0, X)/J, and symmetric around x = 0. Given the symmetry,

we only define f on positive real values. It solves the following equations:

f(x)Λ(x) =
σ2

2
f ′′(x) for all x ∈ [0, X) , x 6= 0 and x /∈ J (10)

with boundary conditions:
1

2
=

∫ X

0

f(x)dx and lim
x→X

f(x) = 0 . (11)

Note that if Ψ < ∞, then f(X) = 0 is an implication of X being an exit point, i.e. a barrier.

Otherwise it is a requirement for integrability. Figure 1 plots three examples of the invariant

distribution of price gaps which solves equation (10)-(11) for a hazard function with power form

Λ(x) = κ
(
x
X

)ν
. The quadratic case, ν = 2, has been considered for instance by Caballero and

Engel (1993a); Berger and Vavra (2018).

Frequency of price changes Na. There are two types of price changes: those that occur when

x reaches X, if it is finite, and those that occur when the firm draws a low enough fixed cost. Since

X is an exit point, the number of price changes of the first type is given by −2σ
2

2
f ′(X). The sign

is negative because f ′(X) is negative. The 2 in front is becaus the same number of price changes

happens when x reaches X as when x reaches −X. Note that if X = ∞ then f ′(X) = 0. The

second type of price changes occurs when |x| < X, which happens with density f(x), and draws a

sufficiently low fixed cost, which happens with probability Λ(x) per unit of time. This gives

Na = 2

[∫ X

0

f(x)Λ(x)dx− σ2

2
f ′(X)

]
. (12)
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Figure 1: Density function f(x) for the invariant distribution of gaps

Power hazard function: Λ(x) = κ
(
x
X

)ν
, X <∞

We remark for future reference that, as shown in Alvarez, Le Bihan, and Lippi (2016) for a very

wide class of models that includes the ones in this paper, the following relation holds for any

feasible policy in this class of menu cost problems:13

Na V ar (∆p) = σ2 (13)

This equation will be useful later in applications. We will use s for the fraction of price changes

that occur before hitting the boundary ±X. We can use equation (12) to replace the Kolmogorov

forward equation for f , and integrate by parts to obtain that:

s ≡
∫ X
−X Λ(x)f(x)dx

Na

= 1− σ2|f ′(X)|
Na

= 1− |f
′(X)|
|f ′(0)|

since Na = σ2|f ′(0)| (14)

where |f ′(0)|, with a slight abuse of notation, is the absolute value of either the right or left

derivative of f(x) evaluated at x = 0.

13The key assumption for this result to hold is that the price gap is closed upon adjustment. See Appendix A,
proof of Theorem 3, for a detailed argument.
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Distribution of price changes. Recall that upon any price change the firm “closes” its gap x,

i.e. the size of the adjustment is ∆p = −x. If X < ∞ then the distribution of price changes has

a mass point at ∆p = −X. The mass of such price changes is equal to σ2

2
|f ′(X)|. There are also

price changes of size |∆p| < X that occur when a firm has x < X and draws a sufficiently low fixed

cost. This occurs with probability Λ(x) per unit of time for a firm with price gap x. Recall also

that at steady state, there is a density f(x) of firms with price gap x. This density is symmetric

around zero. The distribution of price changes is thus symmetric around zero as well. It has the

following form:

∆p =


−x w/ density q(−x) ≡ Λ(x)f(x)

Na
for x ∈ (0, X)

−X w/ probability
σ2

2
|f ′(X)|
Na

(15)

Note that 1−s, as defined in equation (14), is also twice the size of the mass point at the boundary

of the support of this distribution.

Figure 2: Density function q(∆p) of the distribution of price changes

Quadratic Hazard function: Λ(x) = κx2, X =∞, shape parameter: η ≡
(

2κ
σ2

) 1
4

Figure 2 plots a few examples of the density of price changes implied by a quadratic hazard

function Λ(x) = κx2 with an unbounded support X =∞. This uses the definition q(−x) ≡ Λ(x)f(x)
Na

from equation (15), where the density of price gaps f solves the Kolmogorov forward equation
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equation (10). The generalized hazard function and frequency of price changes alone are sufficient

to construct both f and q.

We note that in the quadratic case the distribution of price changes is indexed by a single

parameter η ≡
(

2κ
σ2

) 1
4 determining its shape, and features no mass points at the boundary of the

inaction region since X = ∞. This means s = 1 in terms of equation (14). The parameter η is

recurring in the class of generalized hazard functions of the power form, and generally determines

the shape of the distributions of price changes.

For future reference we define two useful moments. The variance and the Kurtosis of the price

changes Kurt(∆p) can be defined using the distribution in equation (15):

V ar(∆p) =
2
[∫ X

0
x2Λ(x)f(x)dx−X2 σ2

2
f ′(X)

]
Na

(16)

Kurt(∆p) =
2
[∫ X

0
x4Λ(x)f(x)dx−X4 σ2

2
f ′(X)

]
Na

1

[V ar(∆p)]2
(17)

Standardization. It is useful to rescale the firm’s decision rule to isolate the role of the shape

of Λ and of other parameters. Standardization clarifies which objects matter conceptually, and

also helps to bring the model to the data, as shown in Section 4. Let’s start with a price-setting

problem represented by the triplet {X,Λ, σ2} with σ2 > 0 and Λ : (−X,X) → R+ satisfying

Assumption 1. Given the triplet {X,Λ, σ2}, we can compute the corresponding density of price

changes q(·) : (−X,X)→ R, the variance of price changes V ar(∆p), the frequency of price changes

Na, and the share of price changes away from the boundaries s. We have the following result:

Proposition 2. Consider an economy characterized by {X,Λ, σ2}, and associated q, V ar(∆p), Na

and s. For any b > 0 define another economy {X̃, Λ̃, σ̃2, } where X̃ = bX, Λ̃(z) = Λ(z/b) for all

z ∈ (−X̃, X̃), and σ̃ = b σ. These economies feature: (i) the same frequency of price changes,

Ña = Na, (ii) the same fraction of price changes away from the boundaries, s̃ = s, and (iii) the

same shape of the density of price changes, namely: q̃(z) = q(z/b)/b for all z ∈ (−X b,X b) .

Note that we can choose b2 = 1/V ar(∆p), for instance, so that the variance of price changes

in the rescaled economy is one, Ṽ ar(∆p) = 1. This new economy can then be referred to as
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“standardized”. The proposition shows that Kurt(∆p) and the share s only depend on the shape

of Λ, described by Λ̂. In general, the shape cannot be summarized by a finite number of parameters,

but in some situations a single parameter will suffice. For instance, below we consider a case where

Λ is a power function and Λ̂ is described by a single parameter.

In addition to the standardization described above, we can also consider transformations akin to

changing the time units, thus only affecting the frequency of adjustment, but not the distribution

of price changes. In particular, consider a scalar k > 0, and define Λ̂(x) = Λ(x)/k for all x,

σ̂2 = σ2/k and X̂ = X. It easy to see that {X̂, Λ̂, σ̂2} has N̂a = Na/k and Q̂(x) = Q(x) for all x.14

A useful approximation. We conclude with a proposition showing that for the case in which

Ψ < ∞, so that X < ∞, the invariant distribution can be accurately approximated by one

corresponding to a generalized hazard function Λ with unbounded support and arbitrarily large

values for x > X. This approximation is useful because the case with unbounded support is

somewhat simpler to analyze, since it does not involve discussing the mass points at the boundary

of the inaction region.

Proposition 3. Let X < ∞ and let Λ : [0, X) → R+ be a continuous generalized hazard

function, where f : [0, X] → R+ is its corresponding invariant density, assumed to be symmetric.

Let Λk : [0,∞) → R+ be defined as Λk(x) = Λ(x) if x < X and Λk(x) = k otherwise. Let also

fk : [0,∞)→ R+ be the invariant density associated with Λk, also assumed symmetric for negative

x′s. Then fk converges uniformly to f in [0, X] as k →∞.

4 From Price Changes to Price Gaps and Hazards

In this section we show how to recover the invariant density of price gaps f and the adjustment

hazard Λ from the observable distribution of price changes. These two objects then allow us to

recover the underlying distribution G of adjustment costs ψ in a random menu cost model of

Section 2.1. We apply the algorithm to data taken from Cavallo (2015), fitting the distribution of

14In Appendix I we consider an alternative normalization, suitable for the case where X <∞.
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price changes Q and recovering f , Λ, and G. For future reference, we pay particular attention to

estimating the kurtosis of the distribution of price changes.

To do this, we first characterize the restrictions that an increasing hazard function Λ imposes

on Q and establish a mapping from the observables (price changes) to the distribution of price

gaps f and adjustment hazard Λ. We then propose a non-parametric identification strategy to

identify the distribution of price changes which takes into account unobserved heterogeneity across

different products consistent with the theory as described in Proposition 2 . We illustrate these

results fitting a flexible functional form to the distributions Q for several product categories in the

dataset from Cavallo (2015). Interestingly, using this data set which have no time aggregation,

arguably minimum measurement error, and accounting for unobserved heterogeneity, we find dis-

tributions with much smaller Kurtosis than in the literature. From this estimated distribution, we

then recover f and Λ, and from them obtain the distribution of random menu cost G using the

characterization in Theorem 1. In Section 6 we show that the identification result extends to the

case of drift in the state, i.e. to non-zero steady state inflation.

Identification of f and Λ. We start with a lemma that describes the properties of the distribu-

tion of price changes generated by a generalized hazard function. It only requires Assumption 1:

Proposition 4. Let Q be the CDF of price changes corresponding to a generalized hazard

function Λ satisfying Assumption 1. Then, Q is absolutely continuous on (−X,X), so that Q(x) =

Q(−X) +
∫ x
−X q(s)ds for x < X. The density q(·) : (−X,X) 7→ R+ is symmetric around zero,

q(x) = q(−x), and continuous at x /∈ J. Q has mass points if and only if X < ∞, in which case

they are at −X and X, and is fully identified by the collection of all its moments.

The next proposition, which is one of the main results of the paper, obtains the density f of

price gaps from the distribution of price changes. The procedure essentially amounts to solving a

system of two equations in two unknowns: f and Λ. The first equation is the Kolmogorov forward

equation (10) that shows how the generalized hazard Λ determines the distribution of price gaps.

We first integrate it twice and replace σ2 as in equation (13). Once we have f , it is straightforward

to get Λ using the second equation, f(x)Λ(x) = q(x)Na. This one is simple accounting: the number
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of firms changing prices by x is the number f(x) of firms with this gap times the probability Λ(x)

that they change the price.

Theorem 2. Let ∆p be price changes, and let Q and q be the CDF and corresponding density

of price changes corresponding to a generalized hazard function Λ satisfying Assumption 1. Let

Na be the frequency of price changes. The density for the invariant distribution f(x) is given by

f(x) =
2

V ar(∆p)

[∫ X

x

(1−Q(z)) dz

]
for all x ∈ (0, X) (18)

and f(−x) = f(x), where V ar(∆p) is the variance of the price changes computed using Q. The

generalized adjustment hazard Λ(x) is given by

Λ(x) =
Na V ar(∆p)

2

q(x)∫ X
x

(1−Q(z)) dz
for all x ∈ [0, X) (19)

and Λ(−x) = Λ(x).

Recall that the function Λ implied by the models of Section 2.1 and Section 2.2 is increasing

in x ∈ (0, X). If Λ is increasing in (0, X), the right hand side of equation (19) must be increasing.

At any x where Λ is differentiable,

Λ′(x)

Λ(x)
=
q′(x)

q(x)
+

1−Q(x)∫ X
x

(1−Q(z)) dz
≥ 0 for all x ∈ (0, X), x /∈ J (20)

The model of Section 2.1 also implies that Λ(·) is bounded above on (0, X). If this is the case, the

right hand side of equation (19) must be bounded. If Λ is increasing, this is equivalent to

lim
x→X

q(x)∫ X
x

(1−Q(z)) dz
= lim

x→X

q′(x)

−(1−Q(x))
≤ C (21)

for some constant C. Moreover, if X < ∞, then limx→X(1 − Q(x)) > 0 and hence limx→X q
′(x)

must be finite. If X =∞, then limx→X
q′′(x)
q(x)
≤ C by L’Hopital rule. Note that if q has exponential

tails, equation (21) is satisfied even if X = ∞. Moreover, since the model of Section 2.2 does

not imply a bounded Λ it does not require equation (21). In Section 6 we show that the result of
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Theorem 2 extends to the case where the state has a constant arbitrary non-zero drift, and provide

closed form expressions for f and Λ.

A simple measure of state dependence. The expression for Λ in Theorem 2 evaluated at

x = 0 can be used to measure a simple index of the lack of state dependence in pricing. We label

it as C, for “Calvo-ness”:

C ≡ Λ(0)

Na

(22)

The index C measures the fraction of price changes that happen independently of the price gap

x. In terms of the random menu cost model, it measures the fraction of price changes with no

adjustment cost paid. Alvarez, Le Bihan, and Lippi (2016) use the same statistic to index multi-

product version of the Calvo+ model. In that special case, the function Λ is constant, equal to

Λ(0) for all |x| < X, and then it jumps to infinity, i.e. there is a barrier in this case X is simply

equal to the fraction of price changes that do not occur at the barriers ±X. Clearly, the setup here

is much more general, and the definition captures all the price changes that are unrelated to the

value of the price gap. Hence, C is a broad measure of lack of state dependence. The next corollary

of Theorem 2 shows that C can be measured using data on the distribution of price changes.

Corollary 1. The fraction of price changes independent of the price gap C defined in equa-

tion (22), is given by

C =
V ar(∆p)

2E[|∆p|]
q(0) . (23)

Moreover, using equation (12) for Na, C ≤ 1 if Λ is increasing.

The expression in Corollary 1 is intuitive: the fraction of price changes independent of the

state is proportional to the density of price changes at zero, a magnitude that can be estimated.

The constant of proportionality is a ratio of two easily measurable statistics. The importance of

Corollary 1 is that the right hand side of equation (23) involves three observable quantities which

depend exclusively on the distribution of price changes: the density at zero, q(0), and two of its
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moments: the variance V ar(∆p) and the expected absolute value E[|∆p|].15

4.1 Estimating Λ and Q with Unobserved Heterogeneity.

Armed with Theorem 2 we use the data to recover f , Λ, and the model primitives like the distri-

bution of menu cost. However, the estimation of q in many datasets requires dealing with a simple

yet pervasive form of unobserved heterogeneity. The model presented above assumes all observa-

tions are generated by the same model, and in particular that all goods share the same “scale”

parameter σ. This assumption is often violated in the data where similar goods display different

variance in the size of the price changes. The reason to account for unobserved heterogeneity is

that a mixture of distributions with identical kurtosis but different variances will give rise to a

higher kurtosis.16 For instance, two categories of goods with identical frequency and kurtosis, and

hence with an identical propagation of monetary shocks, might give rise to a larger estimate of the

kurtosis if they feature different variance of shocks, thus biasing the predictions of the theory.

We assume that products in a narrowly defined category have the same distribution of price

changes up to an (unobserved) shift in the size, i.e. the distributions have the same shape but

different scale. Proposition 2 discusses exactly this type of transformation that changes the scale

without affecting shape. The setup is similar to a random effect model, yet without assuming

any functional form for the distributions. In particular we use a variation of Kotlarski (1967)’s

lemma. The products (within a category) are indexed by i, and t is the chronological number of

adjustment. Let I be the set of all products and T (i) be the set of adjustment instances for a

product i ∈ I. We use the following specification:

∆pit = bi∆p̃t for i ∈ I and t ∈ T (i) (24)

Here bi corresponds to the scaling factor b in Proposition 2. The six identification assumtpions are

1. #T (i) > 1, so there are at least two price changes for each i

2. ∆p̃t are drawn from a distribution Q, described by Proposition 4, for all t ∈
⋃
i∈I

15Clearly, this statistic also holds in the case of non-zero drift, since C ≡ Λ(x∗)/Na = q(0)/f(x∗), where the
expression for f(x∗) in the presence of drift is given in Section 6.

16See Proposition 11 in Appendix C for the formal treatment of this result.
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3. ∆p̃t and ∆p̃s are statistically independent for all t, s ∈
⋃
i∈I T (i)

4. bi ≥ 0 are drawn from a distribution H for all i ∈ I

5. ∆p̃t and bi are statistically independent for all i ∈ I and t ∈
⋃
i∈I T (i)

6. E[(∆p̃t)
2] = 1 for all t ∈

⋃
i∈I T (i)

That the distribution Q is described by Proposition 4 means, in particular, that it is symmetric

around zero. The last assumption is a normalization, since the variances of H and Q are not

identified together. We have the following result:

Proposition 5. Consider two pairs of integer numbers (j, k) and (j′, k′) such that j+k = j′+k′.

Under the assumptions stated above we have:

E[(∆p̃t)
j]E[(∆p̃t)

k]

E[(∆p̃t)j
′ ]E[(∆p̃t)k

′ ]
=

E[(∆pit)
j(∆pis)

k]

E[(∆pit)j
′(∆pis)k

′ ]
(25)

for any (t, s) with t 6= s.

This proposition has two important implications. First, we can establish a recursive expression

for the even moments of the distribution of ∆p̃t:

E[(∆p̃t)
2k+2] = E[(∆p̃t)

2k] · E[(∆pit)
2k+2]

E[(∆pit)2k(∆pis)2]
for all k ≥ 0 (26)

which only uses equation (25) and the normalization assumed above that E[(∆p̃t)
2] = 1. Starting

from the normalized second moment, we can construct all even moments recursively using equa-

tion (26), thus obtaining a non-parametric identification of the density q.17 Second, for future

reference we display an expression for the Kurtosis of ∆p̃:

Kurt(∆p̃t) =
E[(∆pit)

4]

E[(∆pit)2(∆pis)2]
=

Kurt(∆pit)

1 + corr(∆p2
it,∆p

2
is)CV (∆p2

it)CV (∆p2
is)

for t 6= s (27)

The first equality is how we estimate kurtosis, correcting for this unobserved heterogeneity. The

second equality shows how our method to measure kurtosis amounts to a correction of the kurtosis

17This fully characterizes the distribution of ∆p̃t, since its odd moments are equal to zero due to symmetry.
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computed by pooling different goods without accounting for heterogeneity. Whenever the squares

of the price changes of individual products are positively correlated, as we have systematically

found in the data, the correction leads to a substantial downward adjustment of the estimated

kurtosis.

Cavallo’s scraped data. We use the scraped price data from the Billion Prices Project by

Cavallo (2015) to reduce the measurement error present in other data sets for example due to time

aggregation using the average revenue.18 The time span of the sample is between May 2008 and

June 2010. From daily data on prices we construct the series of spells together with the size of

the price change at the end of each spell. We trim the sample at price changes larger than 150 log

points size in absolute value.19

Table 1 presents the summary statistics of the seven categories we use, as well as the estimated

kurtosis. The kurtosis is estimated in two ways: first by (incorrectly, according to our assump-

tions) pooling different products in the same category (p), and second by accounting for product

heterogeneity (u). To implement the latter procedure, we use equation (27). This equation is a

particular case of equation (25) with j = 4, k = 0, and j′ = k′ = 2. Importantly, the expectation is

taken over t 6= s, and any such pair (t, s) can be taken to estimate it. Our estimator is constructed

as follows: for any pair (j, k), we estimate E[|∆pit|j|∆pis|k] by

1

#I

∑
i∈I

1

#T (i)(#T (i)− 1)

∑
t,s∈T (i),t6=s

|∆pit|j|∆pis|k (28)

where # denotes the number of elements in the set. Note that this estimator includes all available

price changes t, s ∈ T (i) for every product, maximizing the use of the data. Individual products

in the sample have around 20 price changes each. Distributions are centered around zero, with

the mean being around one hundredth of the standard deviation. It is evident from the table

that properly accounting for heterogeneity reduces the estimated kurtosis to about half. This

points to a substantial correlation in absolute values of the consecutive squared price changes. In

Appendix C we tabulate implied correlations recovered from equation (27). These turn out to be

18Link: http://www.thebillionpricesproject.com/datasets/, using store number 1.
19We remove 87 (larger than 150 log points) out of 326,570 price changes for products with at least three spells.
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Table 1: Summary statistics and kurtosis estimates

Category Number Number Ê(∆pit) σ̂(∆pit) Kurtosis Kurtosis Cpooled C
Products P. changes Pooled w/Unobs. w/Unobs.

Heterog. Heterog.

111 3,437 74,464 0.002 0.341 3.4 1.7 0.08 0.07

(0.16) (0.07)

119 3,225 56,527 0.002 0.33 3.8 2.0 0.09 0.06

(0.09) (0.05)

1212 2,551 30,343 -0.001 0.25 3.5 2.1 0.04 0.04

(0.27) (0.16)

122 1,401 27,321 0.002 0.34 3.0 1.7 0.12 0.09

(0.09) (0.05)

118 1,388 30,111 0.003 0.31 3.6 2.0 0.08 0.08

(0.24) (0.12)

117 1,154 20,995 0.007 0.31 3.5 2.0 0.07 0.06

(0.14) (0.05)

561 1,032 17,724 0.002 0.26 3.3 1.8 0.03 0.03

(0.22) (0.13)

Categories legend: 111 “bread and cereals”, 119 “other food products”, 1212 “electric appliances for personal

care”, 122 “soft drinks”, 118 “sugar, honey, and confectionary”, 117 “vegetables”, 561 “non-durable household

goods”. Bootstrapped standard errors in parenthesis.

in the range between 0.29 and 0.45.

To estimate Q we use a Gamma distribution. In principle, the distribution could be estimated

non-parametrically, since every moment is identified. In practice, this would require estimating a

large number of moments, substantially decreasing precision. Instead, we estimate the Kurtosis

and use the unit variance restriction to fit the scale and size of the Gamma distribution. The fitted

density q is presented on the left panel of Figure 3 together with the underlying generalized hazard

function Λ and the density of price gaps f .20 Finally, the right panel contains the distribution

of menu cost recovered from the resulting hazard Λ. The units on the horizontal axis correspond

to the annual profit of the firm. There is no mass point at zero, since the recovered generalized

hazard function has Λ(0) = 0. Note that the model with random menu cost can only rationalize a

bounded generalized hazard function. The Gamma distribution is convenient, since by Theorem 2

20In Appendix C we detail our algorithm and show extended results from fitting a mixture of two Gamma
distributions.

25



it implies a bounded Λ.21

Figure 3: Estimated distribution and implied cost functions (w. unobserved heterogeneity)

Estimated q(·), recovered f(·) and Λ(·) Recovered CDF and density of menu costs

Estimating the degree of state dependence. We now turn to measuring C. We do this in

two ways. First, we ignore the unobserved heterogeneity and assume that the price data for the

narrowest category of goods all come from the same primitives of the model. These primitives

are the generalized hazard function Λ (including the value of X, the barrier) and σ2. Recall

from Theorem 2 that these objects fully describe the data-generating process, and this mapping is

injective. In this exercise we just estimate all the objects on the right hand side of equation (23).

The results are shown in the column labelled “Cpooled” in Table 1. Their average across categories

is 0.072, i.e. just above 7% of price changes are independent of the state. This small number is

due to the small value of the estimated density q at ∆p = 0.

Second, we account for unobserved heterogeneity of the type described above. If there is

heterogeneity of this type across products in the narrowest category, using the simple expression

for C from equation (23) produces an upward bias in the estimate. We derive an unbiased estimator,

the result being analogous to the one in Proposition 5. We express this estimator as a function of

the pooled estimator Cpooled and a correction due to the unobserved heterogeneity:

21In Appendix C we show the procedure to recover the cost function c corresponding to the model in Section 2.2.
This model allows for an unbounded Λ, so we use a power specification Λ(x) = κxν , deriving the moments of Q
and using the analytical expressions to fit the parameters.
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Proposition 6. Under the assumptions 1-5 stated above,

C = Cpooled
(

1 +
Cov(b−1

i , b2
i )

E[b−1
i ]E[b2

i ]

)
< Cpooled (29)

where the two components are given by

Cpooled =
q(0)V ar(∆pit)

2E[|∆pit|]
and 1 +

Cov(b−1
i , b2

i )

E[b−1
i ]E[b2

i ]
=

E[bi]

E[b−1
i ]E[b2

i ]
=

E[|∆pit|−1|∆pis|2]

E[|∆pit|−1]E[|∆pit|2]
for t 6= s

The estimate for Cpooled is obtained from the pooled data, and the correction for unobserved

heterogeneity is measured using the (short) time dimension of the panel. The last column, la-

belled “C w/Unobs. Heterogeneity”, in Table 1 contains the estimation results. Averaging across

categories, the fraction of price changes independent of the state is 0.062 or just above 6%.

The correction multiplier is smaller than one because 1/bi and b2
i are negatively correlated. Of

course, if data for all products i in the narrowest category come from the same model primitives

(Λ, X, σ2), then there is no variation in bi, and C = Cpooled.

5 A Sufficient Statistic for Small Monetary Shocks

This section characterizes the real output effect of monetary shocks using a simple summary

statistic, the cumulative output generated by a once and for all monetary shock. This is the area

under the output’s impulse response function. It combines in a single value the persistence and the

size of the output response. The key result we present is that for small monetary shocks, like the

ones typically considered in the literature, the area is completely encoded by the kurtosis and the

frequency of price changes. These two moments are thus sufficient to compare different models.

We also find that, among the models with non-decreasing adjustment hazards, the kurtosis of

price changes is maximized by the Calvo model. As was established above, only a non-decreasing

generalized hazard function can be rationalized by random menu costs. Calvo model is the limiting

case with no randomness and no option to adjust, so it minimizes the amount of selection and
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hence maximizes the output response. To establish this, we develop a general result that compares

kurtoses generated by two different hazard functions.

The contribution to the cumulative impulse response of a firm with price gap x is

m(x) = −E
[∫ τ

0

x(t)dt |x(0) = x

]
(30)

where τ is the stopping time defined as the first time when x(t) hits ±X or a reduction in adjust-

ment costs causes the firm to change price. This stopping time is stochastic, so the expectation

accounts for both the diffusion of the firm’s price gap and the possible event of adjustment that

happens with a Poisson intensity Λ(x(t)). In words, m(x) is the expected (cumulative) price gap

of a firm that starts with a gap x. Notice that in the Calvo case, where Λ(x) = λ is independent

of x, we immediately obtain m(x) = −x/λ, where 1/λ is the expected duration of a price spell.

The definition above uses the steady state decision rule Λ(x), thus ignoring the general equi-

librium feedback effect of the shock on the firm’s decision. In Proposition 7 of Alvarez and Lippi

(2014) it is shown that, given a combination of the general equilibrium setup in Golosov and Lucas

(2007) and the lack of the strategic complementarities, these general equilibrium effects are of sec-

ond order. In addition, we use the fact that after the first price change the expected contribution

to output of each firm is zero, since positive and negative output contributions are equally likely, so

m(0) = 0. This allows us to characterize the propagation of the monetary shocks without tracking

the time evolution of the whole price gap distribution.

The expectation on the right hand side of equation (30) is with respect to the process for x,

a jump-diffusion with jump intensity Λ(x), diffusion variance σ2, and zero drift. The function

m : [−X,X]→ R is once continuously differentiable, antisymmetric around x = 0, and satisfies:

m(x)Λ(x) = −x+
σ2

2
m′′(x) for all x at which Λ is continuous (31)

0 = m(X) if X <∞ and lim
x→∞

|m(x)|
x

≤ 1

infy Λ(y)
if X =∞ . (32)
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Now we can define the cumulative impulse response to a monetary shock of size δ as

M(δ) =

∫ X

−X
m(x− δ)f(x)dx . (33)

This is simply the aggregate contribution of the firms to the cumulative impulse response. The

response of a firm with the price gap x before the shock is m(x− δ).

Let {X,Λ, σ2} characterize an economy, with its corresponding invariant density f and firm’s

contribution to CIR, m. Let {X̃, Λ̃, σ̃2} be the standardized economy, defined as in Proposition 2,

that has its associated {f̃ , m̃} with m̃ defined as m̃(z) = m(z/b)/b for b2 = 1/V ar(∆p) and

satisfying the corresponding ODE with the boundary conditions for σ̃2 and X̃. Define M̃(δ), the

cumulative impulse response of output to a monetary shock for the standardized economy, as

M̃(δ) =

∫ X̃−δ

−X̃
m̃(x) f̃(x+ δ) dx (34)

The next proposition relates the CIR of output in an economy to the one of its standardized

version by scaling the monetary shock with the steady-state standard deviation of price changes.

In words, for small monetary shocks the dispersion of price changes is immaterial, although in

general the size of monetary shocks should be measured relative to the steady-state dispersion of

price changes.

Proposition 7. Let M and M̃ be the cumulative impulse responses of an economy {X,Λ, σ2}

with Std(∆p) = V ar(∆p)1/2 and the corresponding standardized economy {X̃, Λ̃, σ̃2}. Then

M(δ) = M̃
(

δ

Std(∆p)

)
Std(∆p)

and thus M′(0) = M̃′(0).

The proof is immediate, using the properties of m̃ and f̃ established above, differentiating

equation (34), and evaluating at δ = 0. Summarizing, Proposition 7 states that for small monetary

shocks, the steady state standard deviation of the price changes is not important. For large shocks

it clearly is. For example, take the case X < ∞. For δ ≥ 2X̄, we have M(δ) = 0, because the
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shock displaces all the firms far enough, and they adjust immediately. Since the standardized

version has X̃ = X/Std(∆p), this shows the importance of the size of the shock for large values.22

The marginal version of this cumulative impulse response is

M′(0) = −
∫ X

−X
m′(x)f(x)dx (35)

This term can be used for a linear approximation of M around zero. Our main result is that it

can be expressed as a function of two sufficient statistics: Kurt(∆p), the kurtosis of the steady

state distribution of price changes, and Na, frequency of price changes.

Theorem 3. Let Λ(x) be any function satisfying Assumption 1. Then the cumulative impulse

response for a small monetary shock is given by the ratio of two steady state statistics:

M(δ) =
Kurt(∆p)

6Na

δ + o(δ2) (36)

The approximation is accurate up to second order terms, so the remainder is of order δ3. This

happens since M′′(0) is zero, which follows from M being an antisymmetric function, because m

is antisymmetric and f is symmetric.

Our results from Theorem 1 show that only weakly increasing Λ can be rationalized by the

solution of a firm problem subject to random menu costs. But Assumption 1 allows for a very large

class of generalized hazard functions, including decreasing and non-monotone ones. Theorem 3

holds for such functions too. It makes no reference to the micro-foundations behind Λ and hence

also applies to setups where firms’s behaviour is not described by an increasing hazard. An example

is the model in Woodford (2009), where firms conduct costly reviews and have imperfect recall and

access to their state. Also Costain and Nakov (2011b) use generalized hazard functions, without

linking them to random menu costs.

22A similar result was shown in Alvarez and Lippi (2014) for the case of multiproduct firms, which only overlap
with the current set up for the Golosov and Lucas case — with one product per firm.
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Kurtosis. The next proposition discusses the properties of generalized hazard function that

determine the Kurtosis of price changes. We concentrate on a case where we hold the adjustment

frequency constant. This procedure allows us to isolate the effect of a change in Λ on selection

from its effect on the frequency (recall that that fixing the frequency is equivalent to fixing the

time units). Moreover, with the frequency fixed, the kurtosis of price changes directly maps into

the approximate cumulative impulse response.

Proposition 8. Fix Na and consider two hazard functions Λ1(x) and Λ2(x) with the respective

boundaries X1 and X2 with 0 < X2 ≤ X1 ≤ ∞. Let Λ1(0) > Λ2(0) and let Λ1(x)− Λ2(x) change

the sign at most once. Then, Λ1(x) generates a higher kurtosis of price changes.

The condition that Λ1−Λ2 changes sign only once means that it is positive at first and maybe

negative for x far from zero. This is to say that Λ1 generates more adjustment for smaller x,

and Λ2 generates more for larger ones. Selection is therefore more pronounced with Λ2, and the

kurtosis of price changes is lower. There are two interesting corollaries of this result. The first is

that for a fixed X the highest kurtosis is attained by the constant generalized hazard function.

This corresponds to the Calvo+ case:

Corollary 2. Fix Na, the number of adjustments per unit of time, and X <∞. The function

Λ(x) that is constant on (−X,X) maximizes the kurtosis of the price changes over all functions

Λ(x) that are weakly increasing on (0, X) and satisfy Assumption 1.

Second, a constant hazard function in combination with the infinite boundary X maximizes

the kurtosis of price changes over all weakly increasing hazards. This is the pure Calvo case:

Corollary 3. Fix Na. The constant function Λ(x) ≡ λ maximizes the kurtosis of the price

changes over all weakly increasing functions Λ(x) satisfying Assumption 1.

By Theorem 3, it also means a constant Λ maximizesM′(0) for a fixed Na. This highlights the

role of selection. A strictly increasing rate of adjustment Λ implies positive selection, so the firms

with larger deviations are more likely to adjust. When Λ is flat, there is no selection, so the price

changers are drawn randomly from the population. Shocks are accommodated more slowly in this
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case, because the adjustment frequency does not depend on how much a firm needs to adjust, so

the response of price takes longer, and hence the response of output is larger.

Finally, Proposition 8 sheds some light on the relationship between the strength of state depen-

dence and the magnitude of output response. As we noted before, one measure of the strength of

state dependence is the index C ≡ Λ(0)/Na, the share of adjustment happening independently of

the price gap. We can show that, holding constant the shape of Λ (captured by its curvature) and

adjustment frequency, this index co-moves with the Kurtosis. Hence, a higher share of adjustment

independent of x means a stronger output response for the same shape of the hazard.

Define the curvature of the function Λ as

k(x) =
Λ′′(x)x

Λ′(x)

To understand what it means for two functions to have the same curvature, take some arbitrary

Λ and decompose it into two parts, the intercept and the rest: Λ(x) = Λ(0) + (Λ(x)−Λ(0)). Now

consider two simple linear transformations of the two parts of the hazard:

Λ1(x) = a1Λ(0) + b1(Λ(x)− Λ(0)), Λ2(x) = a2Λ(0) + b2(Λ(x)− Λ(0))

The transformation scales the intercept and the rest with different numbers, changing the strength

of state dependence but broadly preserving the shape (it is easy to see that both Λ1 and Λ2 have

the same curvature as Λ). When Λ1 and Λ2 generate the same adjustment frequency, the one with

a weaker state dependence (higher C) corresponds to a higher Kurtosis.

Corollary 4. Consider two generalized hazard functions Λ1(x) and Λ2(x) with the same

boundary X ≤ ∞. Furthermore, assume that they have the same curvature k everywhere and the

frequency of adjustment Na. Then Kurt1(∆p) > Kurt2(∆p) if and only if C1 > C2.

An immediate implication of the Corollary 4 is that for two economies with the same frequency

of price changes and the same curvature of the generalized hazard function, the one with higher

value of C has a higher cumulative impulse response after a monetary shock.
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5.1 Illustration with a power hazard function

In this section we describe the case where the generalized hazard is a power function with the

power parameter ν. In particular, we let Λ(x) = κ|x/X|ν on (−X,X) for some ν ≥ 0. This

functional form nests Calvo-plus models with ν = 0 and quadratic generalized hazards functions

with ν = 2.

We use this example to illustrate how the parameters affecting the shape of Λ determine the

Kurtosis of price changes. To do this, we first show that, with ν fixed, the Kurtosis of price

changes varies one-to-one with the share of adjustments from strictly between the barriers, s.

This highlights the role of selection: the output response is stronger when fewer firms reach the

boundaries, because fewer firms are close to adjustment right before a monetary shock happens.

Second, we show that for any s the Kurtosis of price changes decreases monotonically with the

power ν, which governs the shape of Λ.

We now describe the invariant density f . Upon a renormalization, we can solve for a symmetric

density f̂(z) defined by f̂(z) = Xf (zX). The function f̂ satisfies

ρzν f̂(z) = f̂ ′′(z) with f̂(1) = 0 and

∫ 1

0

f̂(z)dz =
1

2
(37)

where ρ ≡ 2κX2/σ2. The solution to equation (37) is given by

f̂(z) = c1

√
z I 1

ν+2

(
2
√
ρ

ν + 2
z
ν+2
2

)
+ c2

√
z K 1

ν+2

(
2
√
ρ

ν + 2
z
ν+2
2

)
for all z ∈ [−1, 1] .

This is a combination of modified Bessel functions of the first and second kind I 1
ν+2

and K 1
ν+2

of order 1
ν+2

, where the constants c1, c2 are chosen to satisfy the two boundary conditions described

in equation (37). The form f̂ depends on the parameters (ρ, ν) that capture adjustment coming

from random menu costs. Note that if X =∞ then c1 = 0.

It follows that if two models have the same (ν, ρ), then the distribution of price changes in one

is a rescaling of that in the other. The dimensionless statistics such as the kurtosis, the fraction

of adjustment strictly within the boundaries s, or equivalent the mass of Q on ±X, are the same:
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Proposition 9. Let Λ(x) = κ|x/X|ν . The Kurtosis of price changes, the share of adjustments

strictly between the boundaries, and the frequency of price changes satisfy: Kurt(∆p) = K̂(ρ, ν),

s = Ŝ(ρ, ν), and Na = σ2

X2 N̂(ρ, ν) respectively, where these functions have no other parameters.

For fixed ν, the function Ŝ(·, ν) is increasing in ρ, and K̂(·, ν) is decreasing in ρ.

Using this proposition we can fix s, say to s = 1, or X = ∞, making Kurt(∆p) a function of

ν only. Alternatively, fixing ν makes Kurt(∆p) a function of the fraction of price changes strictly

between barriers, s.

Figure 4: Kurtosis of power hazard function as ν and s vary

Hazard function Λ(x) = κ xν and X =∞ Hazard function Λ(x) = κ
(
x
X

)ν
and X <∞

The left panel of Figure 4 displays the value of Kurt(∆p) for the case where X = ∞ as a

function of ν. Note that Kurtosis goes from 6, corresponding to ν = 0, or pure Calvo, to a value

of 1, corresponding to ν → ∞ which approximates Golosov and Lucas. Note that for ν = 2, the

quadratic case, Kurt(∆p) ≈ 1.75.

The right panel of Figure 4 displays the value of Kurt(∆p) for the case of X <∞ as a function

of s, the fraction of price changes strictly between the boundaries. We display this relationship for

three values of ν. Fixing ν, we vary ρ to obtain a larger share of price changes strictly inside the

barriers s. This illustrates the smaller selection effect of price changes when barriers are hit less

often. Recall that s = 0 is equivalent to X =∞. For each value of s, the lines show that a higher

curvature ν corresponds to a lower Kurt(∆p).
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6 Extending the setup to a non-negligible inflation

In this section we introduce a constant drift µ into the price gap faced by the firm, so that in the

absence of control the price gap evolves as dx = µdt+ σdW , where µ represents (the negative of)

the value of the steady state inflation. In this case the solution of the firm problem, i.e. its value

function, the adjustment thresholds, and the generalized hazard Λ are no longer symmetric around

x = 0. Below we analyze the effect of the non-zero drift µ on the recovery of the distribution of G

using Λ, and also on the recovery of Λ using the distribution of price changes q and Q.

The firm’s problem. The value function for the problem with drift µ is:

rv(x) =

min

{
Bx2 + v′(x)µ+

σ2

2
v′′(x) + κ

∫ Ψ

0

min
{
ψ + min

z
v(z)− v(x) , 0

}
dG(ψ) , r

(
Ψ + min

z
v(z)

)}

The presence of the drift µ has several implications for the decision rules. Denote the optimal

return point by x∗, so that x∗ = arg minx v(x). It is no longer the case that x∗ = 0, meaning that

x∗ does not coincide with the minimum of the flow cost function. Furthermore, v and Λ are no

longer symmetric in x around x = x∗, and in general we need to distinguish the upper and lower

bound of the range of inaction where it is not optimal to pay the fixed cost Ψ. We label the upper

and lower bound of such region by x̄ and x respectively. We no longer have X = x = −x, and in

general x̄ − x∗ 6= x∗ − x. The generalized hazard function Λ : (x, x̄) → R+ satisfies, as with no

drift, Λ(x) = κG (v(x)− v(x∗)) in its domain. One can easily show that the value function v(·)

and the generalized hazard function Λ(·) are both increasing in x for x ∈ (x∗, x̄) and decreasing in

x for x ∈ (x, x∗), with v strictly so in each of the intervals.

Rationalizing Λ in the presence of a drift. We analyze the generalization of Theorem 1 for

µ 6= 0. In this case it is not enough to have three arbitrary numbers x < x∗ < x a bounded function

Λ : [x, x] → R+ increasing in [x∗, x] and decreasing in [x, x∗] to recover v and G. Instead, we can

construct a unique candidate value function, and then check the key monotonicity property for this

candidate. If the property holds, then we can rationalize Λ, the associated thresholds x < x∗ < x,
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and obtain the unique distribution G for the random menu cost.

We first present the generalization of Lemma 1 to the presence of a drift. The main difference

with the driftless case is that now u is defined in the entire domain of Λ instead of [0, x].

Lemma 2. Take a positive function Λ : [x, x]→ R+. Let the function u solve the linear ordinary

differential equation

[r + Λ(x)]u(x) = 2Bx+ µu′(x) +
σ2

2
u′′(x) for x ∈ [x, x] (38)

with boundary conditions u(x) = u(x) = 0. The solution u exists and it is unique. If Λ is the

GHF for the problem with value function v we have

v(x) =
B

r
(x∗)2 +

σ2

2 r
u′(x∗) +

∫ x

x∗
u(z)dz for x ∈ [x, x] (39)

Now we are ready to present the natural extension of Theorem 1. The main substantive

difference is that it does not suffice that Λ be symmetric when µ 6= 0. Indeed the “test” to see if

Λ can be rationalized or not is whether the solution to equation (38) has the correct monotonicity

properties, given by equation (40), which is set in terms of U , the integral of u.

Theorem 4. Fix the discount rate r > 0, the curvature of the profit function B > 0, the

volatility of shocks σ > 0, and the thre thresholds x < x∗ < x, where either both x and x are

finite, or x = −x = ∞. Consider a function Λ(·) : (x, x) → R+ that is differentiable, bounded,

increasing on (x∗, x), decreasing on (x, x∗), and with limx→x Λ(x) = limx→x Λ(x). Let u be the

unique solution of equation (38) in the domain [x, x], with boundary conditions u(x) = u(x) = 0.

Define U(x) ≡
∫ x
x∗
u(z)dz for all x ∈ [x, x]. There exist positive real numbers {κ,Ψ} and a cost

distribution G(·) : [0,Ψ] → [0, 1] with a density g(·), continuous on (0,Ψ), and possibly a mass

point G(0) > 0, that rationalizes Λ with a value function that solves equation (3) if and only if

U(x) = U(x), u(x) ≤ 0 for all x ∈ (x, x∗), and u(x) ≥ 0 for all x ∈ (x∗, X̄) (40)
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When these conditions are met we have:

κ = lim
x↑x

Λ(x) , Ψ = U(x) and , G(0) =
Λ(0)

κ
(41)

g (U(x)) =
Λ′(x)

u(x)κ
for all x ∈ (x, x) (42)

The practical use of this result is that it allows to check if {x, x∗, x,Λ} constitute a valid optimal

policy for the problem described by {B, r, µ, σ2} and some distribution of random fixed cost G

with some fixed cost Ψ. To find out if they do, it is necessary and sufficient to solve the linear

o.d.e. in equation (38) and check the monotonicity properties equation (40) from its solution.

6.1 From price changes to the GHF (Λ) in the presence of a drift

In this section we extend Theorem 2 recovering f and Λ from a distribution of price changes with

density q and CDF Q for the case where the price gaps have a drift µ. The logic is the same

as before, but the expressions for the density of the invariant distribution f and the generalized

hazard function Λ are more cumbersome than the in the case with zero drift.

The first step is to write the Kolmogorov Forward equation for the invariant distribution in the

case where the price gap as a drift µ, which becomes:

0 = −µf ′(x)− Λ(x)f(x) +
σ2

2
f ′′(x) for all x 6= x∗ and x ∈ [x, x] (43)

0 = f(x) = f(x) and

∫ x

x

f(x)dx = 1 . (44)

The distribution of price changes satisfies the straightforward generalization of the case with no

drift, i.e. it has density q and two mass points at its extremes:

q(x∗ − x) =
f(x)Λ(x)

Na

for all x ∈ [x, x]

dQ(x∗ − x) = −σ
2

2
f ′(x)/Na , dQ(x∗ − x) = +

σ2

2
f ′(x)/Na
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where the number of price changes satisfies:

Na =

∫ x

x

Λ(x)f(x)dx+
σ2

2
f ′(x)− σ2

2
f ′(x)

Suppose we have the number of price changes Na as well as the distribution of price changes

Q. We will first obtain the value of µ and σ2, and using them and Q we obtain explicit expressions

for the invariant density f and for the generalized hazard function Λ with {x, x∗, x}.

Importantly, the thresholds x and x together with the resetting point x∗ are not readily scanned

from the data, because price gaps are not observable. Instead, the data directly show price changes,

including the extreme values x−x∗ and x∗−x. For this reason, we break the procedure that recovers

{f,Λ, x, x∗, x} in two steps. First, we show how to recover the re-centered distribution of price

gaps f̃(y) = f(y + x∗)/Na · σ2/2 supported on (x − x∗, x − x∗) and the re-centered hazard Λ̃(y)

defined by Λ(y + x∗) = Λ̃(y) defined on the same interval. Second, we briefly discuss the recovery

of x∗ that leads to {x, x, f,Λ}.

Theorem 5. Let Q be the CDF of the price changes, with density q in its interior, and let Na

be the frequency of price changes. Assume Q and Na have been generated by the solution to a

firm’s problem for an uncontrolled price gap process with parameters µ and σ2 with µ 6= 0 and

σ2 > 0. Let the thresholds x < x∗ < x, the generalized hazard function Λ, and the distribution of

price gaps f also be generated by the solution to this problem. Then,

µ = −E[∆p]Na, and σ2 is the solution to M∆p

(
2µ

σ2

)
= 1 (45)

where M∆p(ϕ) ≡
∫

exp(ϕz)dQ(z) is the moment generating function of ∆p. Define φ = 2µ/σ2 and

R(z1, z2) ≡
∫ z2
z1

exp (φz)dQ(z). The recentered and rescaled distribution of price gaps defined by
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f̃(y) ≡ f(y + x∗)/Na · (σ2/2) is

f̃(y) =



−
∫ x−x∗

0
eφzR (−z, 0) dz − a

φ

[
eφ(x−x∗) − 1

]
if y = 0

f̃(0) +
∫ 0

y
eφzR (0,−z) dz +

a

φ

[
eφy − 1

]
if y ∈ [x− x∗, 0)

f̃(0) +
∫ y

0
eφzR (−z, 0) dz +

a

φ

[
eφy − 1

]
if y ∈ (0, x− x∗]

where the constants a ≡ f̃ ′(0+) < 0, and a ≡ f̃ ′(0−) > 0 are

a =
φ
[∫ 0

x−x∗ e
φzR (0,−z) dz −

∫ x−x∗
0

eφzR (−z, 0) dz
]

+ eφ(x−x∗) − 1

eφ(x−x∗) − eφ(x−x∗) and a = 1 + a

Finally, Λ̃(y) = q(−y)/f̃(y) · (2/σ2) for y ∈ (x− x∗, x− x∗) and y 6= 0.

Now armed with Λ(y + x∗) = Λ̃(y), one can recover x∗ and consequently {x, x, f,Λ}. One way

to do it is to guess a value for x∗ and use equation (38) to solve for the function u with boundary

conditions u(x) = u(x) = 0:

[r + Λ(x− x∗)]u(x) = 2Bx+ µu′(x) +
σ2

2
u′′(x) (46)

The guess is correct if u(x∗) = 0. If u(x∗) 6= 0, the guess has to be updated.

Finally, to assess if the setup with µ = 0 is a good approximation for economies with low but

non-zero inflation, we show the following:

Proposition 10. Suppose the distribution of price changes Q(x;µ) and adjustment frequency

Na(µ) are generated by the solution to a firm’s problem with thresholds x < x∗ < x and generalized

hazard function Λ : (x, x) → R+ for an uncontrolled price gap process with parameters µ and σ2

with µ 6= 0 and σ2 > 0. Suppose also they are analytical functions of µ. Then,

Kurt(∆p;µ) = Kurt(∆p; 0) + o(µ2) (47)

Na(µ) = Na(0) + o(µ2) (48)
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In words, the setup with no inflation provides approximations for Kurt(∆p) and Na that work

up to the second order. The odd powers in the expansion around zero inflation disappear because

of the symmetry. The cumulative impulse response to a monetary shock in case µ = 0 is therefore

a good approximation for economies with small inflation.

7 Scope, limitations and relation to the literature

This section discusses the scope and limitations of our results, and the implications for selected

contributions that have analyzed related questions in models with sticky prices.

Results with a non-neglible drift (inflation). It was shown in Section 6 that the possibility

of establishing an inverse mapping is not affected by the presence of drift (Theorems 4 and 5 and the

version with drift of Theorems 2 and 3). This is encouraging and suggests that the scheme might

be fruitfully applied to similar problems with Ss behavior, such as the optimal capital investment

problems studied by Guiso, Lai, and Nirei (2017); Caballero and Engel (1999); Baley and Blanco

(forthcoming). Instead, the sufficient statistic result, as we review next, requires that inflation to

be close to zero.

Main assumptions and limitations of the sufficient statistic result. Four assumptions are

key for the sufficient statistic result of Theorem 3. The first one is that the model has no inflation,

so that several model objects display symmetry properties. While the assumption of zero inflation

might seem restrictive, we showed in Proposition 10 that it provides a good approximation to

models where inflation is low. Empirical evidence consistent with the insensitivity of firms’ decision

with respect to inflation in a neighborhood of zero inflation, is presented in Alvarez et al. (2019)

using data from Argentina and in Nakamura et al. (2018) using data from the US. In both cases

the evidence for insensitivity covers inflation rates at least as large as 3 per cent per year, and

even higher. The second key assumption for the result to hold is that upon adjustment the firm

completely closes the price gap, i.e. that x is reset to zero. This assumption is violated in models

40



with strategic complementarities, or in models with price plans (as in Eichenbaum, Jaimovich,

and Rebelo (2011)). In such cases Theorem 3 is not an accurate summary of the impulse response

and other methods must be used to approximate the cumulated output response (See Alvarez

and Lippi (2019) and Alexandrov (2020) for some results on, respectively, price plans and large

shocks).23 A third assumption is that x follows a Brownian motion. This assumption allows us

to use the Kolmogorov forward equation in the proof. In a model with leptokurtic shocks, such

as Midrigan (2011), the proposition fails to hold. However, for moderate degrees of leptokurtic

shocks, consistent with the data on the distribution of firms’ nominal shocks, the proposition

provides an informative benchmark (see Section 5 in Alvarez, Le Bihan, and Lippi (2016) and the

numerical results in Gautier and Le Bihan (Forthcoming)). Finally, the fourth assumption is that

the monetary shock is described as a small once and for all change in the common nominal cost.

For instance, if the shock will be large enough, in a simple sS model a large fraction of firms will

adjust on impact. Also, for large monetary shocks, the effect of steady state inflation may not be

second order. See Alexandrov (2020) for a theoretical analysis, and Alvarez and Neumeyer (2020)

for simulations and empirical evidence on the effect of non-negligible steady state inflation rates

(25 per cent per year and larger) and/or large once and for all shocks.

Aggregation across heterogenous firms. We briefly discuss how Theorem 3 can be applied to

economies composed of heterogenous firms. Assume that there are S groups of firms with different

parameters, each with an expenditure weight e(s) > 0, N(s) price changes per unit of time, and

a distribution of price changes with kurtosis Kurt(s). In this case, applying the Theorem’s result

to each group and aggregating, we obtain that the area under the IRF of aggregate output for a

small monetary shock δ is

M(δ) = δM′(0) + o(δ2) =
δ

6

∑
s∈S

e(s)

Na(s)
Kurt(s) + o(δ2) =

δ

6
D
∑
s∈S

d(s)Kurt(s) + o(δ2) (49)

23Nevertheless, the results in Alvarez, Lippi, and Souganidis (2021) show that with strategic complementarity
the ratio of the CIR across models with and without strategic complementarities is the same, and hence equal to
the one given by the ration of Kurtosis to Frequency.
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where D is the expenditure-weighted average duration of prices D ≡
∑

s∈S
e(s)
Na(s)

, and d(s) ≡ e(s)
Na(s)D

are weights that take into account both relative expenditures and durations. When all groups have

the same durations, then d(s) = e(s) and M is proportional to the average of the kurtosis of the

sectors. As explained in Section 4, and shown in Proposition 11 in Appendix C, this average is also

different from the kurtosis of the pooled data. This result can be seen as an instance of Jensen’s

inequality which is important when applying the theorem to an economy with heterogenous sectors.

This applies even if all the groups have the same kurtosis.24 However, if groups are heterogenous

in duration (or expenditures), then the kurtosis of the groups with longer duration (or higher

expenditures) receive a higher weight in the computation of M. Suppose for instance that a

fraction of firms have flexible prices (zero duration in our model, or infinitely many price changes

per unit of time), as in Dotsey and Wolman (2020). The formula in equation (49) implies that

the flexible price firms must be given a zero weight in the computation of M, which is computed

only on the mass of firms with sticky prices. Notice that this is very different from computing the

M as the ratio of the cross-sectional average kurtosis and the average frequency: the cumulated

impulse response computed using “average data” would be zero, while the true one is not.

Empirical tests of the sufficient static result. The robustness of Theorem 3, which holds in

a broad variety of different models, has motivated us to pursue an empirical test of this theoretical

prediction. Ongoing work in Alvarez, Ferrara, Gautier, Le Bihan, and Lippi (2021) uses data

for a large number of firms, representative of the French economy, as well as the micro data

to measure the cross sectional moments (frequency and kurtosis) for about 120 PPI industries

and 220 CPI categories. We use a Factor Augmented VAR to measure the sectoral responses to

a monetary shock, as summarized by the cumulative impulse response of sectoral prices (CIR),

under three alternative identification schemes. The estimated CIR correlates with the kurtosis of

price changes and the frequency of price adjustments consistently with the prediction of the theory

(equal coefficients with opposite signs). The analysis also shows that other moments not suggested

by the theory, such as the mean, standard deviation and skewness of the size-distribution of price

24The effect of heterogeneity in Na(∆pi) on aggregation is well known for the Calvo model: D is different from
the average of Na(∆pi)’s, see for example Carvalho (2006) and Nakamura and Steinsson (2010).
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changes, are not correlated with the CIR. A related analysis for the United States is presented in

Hong et al. (2020), where the authors aim to unveil statistically significant correlations between

sectoral producers price indices (24 month after the monetary shock) and a set of cross sectional

moments of the distribution of price changes. In spite of the wording, which presents the empirical

evidence as a rejection of the theory, we note that this evidence is not a test of the sufficient statistic

proposition since the outcome variable is the level response of prices while theory concerns the

cumulated response of output. To be clear, the dependent variable in the the regression in Hong

et al. (2020) is not the one derived in the theory. Overall, while the data are potentially interesting,

the bulk of that empirical analysis does not provide an explicit test of the theory.25

Relation with Caballero Engel’s Flexibility Index. Caballero and Engel (2007) introduced

the notion of Flexibility Index (F), subsequently used in several studies such as Berger and Vavra

(2018), as an inverse measure of monetary non-neutrality. In Appendix D we define F in terms

of the model, using Caballero and Engel’s (2007) formula, and study its relationship with the

cumulated impulse response that was used in Section 5 as a measure of monetary non-neutrality.

We show that F measures the slope of the impulse response of prices right after a small monetary

shock. We show that for models with barriers, where X < ∞, the flexibility index is always

infinite. This prompts us to focus on the cases without barriers, X =∞, where F is finite. In such

cases we can compare F with the summary measure given by the cumulative impulse response

defined in equation (33). We use this simple model to display several examples where F is not an

accurate summary of the effect on output, neither of its cumulative response, nor of its short term

response.

Figure 5 displays several non-pathological examples derived for a model with a power hazard

function Λ(x) = Λ(0) + κxν (see Appendix D for details) with different parameters ν and Λ(0)

chosen to produce a frequency Na = 1 and a constant flexibility index F = 3. The left panel shows

25In addition to the (wrong) units of the outcome variable, we note that several specifications used in that paper,
such as those where when kurtosis is used as the only regressor, are inconsistent with the theory that prescribes
that both kurtosis and frequency are part of the specification since they are in general not orthogonal (for instance
both vary following a change in the distribution of adjustment costs). It is interesting that, in spite of all the
wedges between the evidence and the theory, in the specifications where kurtosis and frequency are both entered
as regressors the sign of the estimated coefficients are consistent with the sufficient statistic proposition and often
statistically significant (see e.g. column 1 and 6 of Table 1 in their Section VIII and the columns of Table 12).
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Figure 5: Limitations of the Flexibility Index (all cases have F = 3 and Na = 1)

IRF for two cases with same F and Na Values of Kurt(∆p) relative to case with ν = 2
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two cases with the same initial slope F of the impulse response, producing a cumulative impulse

response that differ markedly, even in the short run: for instance, the ratio of the two IRF evaluated

at the expected average duration of prices i.e. at t = 1 is higher than 4. The right panel shows

several cases producing a constant flexibility index, also equal to 3, with substantially different

values of the cumulated output response that doubles as ν increases (plotted on the vertical axis

relative to the case where ν = 2).

8 Concluding remarks and future research

This paper discussed the foundations of the generalized hazard function, a flexible modeling block

used in several sticky-price setups, and provided a mapping to the primitives underlying the firm’s

optimization problem.

Our first contribution was to show how to identify the generalized hazard function from ob-

servable objects, such as the distribution of the size of price changes, by means of simple closed

form equations. In Appendix E we complement these results by establishing that, under regular-

ity conditions, the survival function S(t), measuring the distribution of price durations, uniquely
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identifies Λ(x) as well.26 We illustrate this result with an application to US micro pricing data.

Our empirical strategy accounts for unobserved heterogeneity across products, which we show to

be important in estimating the Kurtosis of price changes.

The second main result is the analytic generalization of the “Kurtosis result” from Alvarez, Le

Bihan, and Lippi (2016) to a considerably larger set of models. As described above, this result

establishes a sufficient statistic to compute the cumulative output response to a small monetary

shock: the ratio of the kurtosis of the steady-state distribution of price changes over the frequency

of price adjustment. We also proved that the Calvo model yields the maximum amount of monetary

non-neutrality within the class spanned by the random menu cost models, while the canonical menu

cost developed by Golosov and Lucas (2007) yields the minimum effect.

Future developments concern both empirical applications as well as theoretical extensions. On-

going research using sectoral PPI and CPI data for France, together with the micro moments

underling these sectors, reveals considerable empirical support of the informativeness of the suf-

ficient statistic identified in Theorem 3, see Alvarez et al. (2021). Also, our analytical setup can

be extended to study multiproduct firms, as in Midrigan (2011); Alvarez and Lippi (2014), and

to study the entire profile of the IRF (as opposed to the cumulative impulse response) using the

methods explored in Alvarez and Lippi (2019).
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Appendix:

The Macroeconomics of Sticky Prices
with Generalized Hazard Functions

Fernando Alvarez, Francesco Lippi, and Aleksei Oskolkov

A Proofs of the Theorems

Proof. (of Lemma 1). Define the function U(x) ≡ v(x)− v(0) and rewrite equation (3) as

rU(x) = Bx2 +
σ2

2
(U ′′(x)− v′′(0))− κ

∫ U(x)

0

G(ψ)dψ for x ∈ [0, X] (50)

with boundary conditions U ′(X) = 0 and U(X) = Ψ. Note that by definition U(0) = 0. To obtain
equation (50) we used integration by parts on the right hand side of equation (3):∫ U(x)

0

[ψ − U(x)]G′(ψ)dψ = G(ψ)ψ
∣∣∣U(x)

0
−
∫ U(x)

0

G(ψ)dψ − U(x)

∫ U(x)

0

G′(ψ)dψ

= G(ψ)ψ
∣∣∣U(x)

0
−
∫ U(x)

0

G(ψ)dψ − U(x) [G(U(x))−G(0)]

= −
∫ U(x)

0

G(ψ)dψ + U(x)G(0)

Next differentiate both sides of equation (50) with respect to x to obtain:

[r + κG(U(x))]U ′(x) = 2Bx+
σ2

2
U ′′′(x) for x ∈ [0, X] (51)

with boundary conditions given by: U ′(X) = 0 and U ′(0) = 0. The first boundary condition
is smooth pasting. Note that if X = ∞ we do not have smooth pasting, but since v is bounded
above so is U , then it must be that limx→∞ U

′(x) = 0, and hence the analogous boundary condition
holds in the case where X is unbounded. The second boundary is implied by the symmetry and
differentiability of v(·), and hence of U(·), around x = 0. Thus, solving for the value function in
equation (3) is equivalent to solving for U(·) in equation (51) with its corresponding boundary
conditions.

Now define u(x) ≡ U ′(x) and rewrite equation (51) using that Λ(x) = κG(U(x)), by equa-
tion (2). This gives the o.d.e. in equation (4). The boundary conditions described above in terms
of U ′ thus become u(X) = u(0) = 0.

Uniqueness and invertibility. Note that equation (4) is a linear second order ordinary differen-
tial equation of the Sturm-Liouville type with two Dirichlet boundary conditions, where we write:
L(u)(x) ≡ [r + Λ(x)]u(x)− σ2

2
u′′(x) and thus the equation above can be written as L(u)(x) = 2Bx.
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The function Λ(·) defining the operator L is continuous, so it has a unique solution u(·). To see this
let L(u)(x) = 2Bx and let {θj, ϕj} be the eigenvalues and orthonormal eigenfunctions of L satis-
fying the Dirichlet boundary conditions, i.e. solving L(ϕj) = θjϕj and with ϕj(0) = ϕj(X) = 0.
By linearity we have L(

∑
j αjϕj) =

∑
j θjαjϕj for any square integrable sequence {ϕj(·)}. Then

we can choose {αj} so that u(x) =
∑

j θjαjϕj(x), with the equality in the L2 sense. In particular
we can set αj = 〈ϕj, u〉/θj. Again, the case of X = ∞, requires a slightly different argument for
the existence of its solution. In particular, the existence of a solution is guaranteed by Theorem
3.1 in Lian, Wang, and Ge (2009). By the Maximum principle then u(x) > 0 since 2Bx > 0 in
(0, X). Since u > 0 then U is increasing and thus it is invertible.

Value function. We construct v(·) as follows. Recall u = U ′ and U(0) = 0, we have

U(x) =

∫ x

0

u(z)dz for all x ∈ [0, X] and Ψ = U(X) .

From the definition of U(x) = v(x)− v(0) and equation (3) we have

v′′(0) = U ′′(0) = u′(0) and rv(0) = v′′(0)
σ2

2
so v(0) = u′(0)

σ2

2r

which gives equation (5) in the lemma. Note that v(·) is increasing because u(x) > 0 on (0, X) as
established above. �

Proof. (of Theorem 1). We now construct the fixed cost Ψ, the Poisson arrival rate κ, the value
of G(0) and the density G′(·) that rationalize the generalized hazard rate Λ(·) using the function
u(·). We use equation (2), Λ(x) = κG(U(x)) for all x ∈ [0, X], which evaluated at x = 0 implies
Λ(0) = κG(0). Denote by w(·) ≡ U−1(·), the inverse function of U(·), mapping [0,Ψ] onto [0, X].
Set κ to be κ = Λ(X) to ensure that G(Ψ) = 1. Differentiating the expression above with respect

to x, we have G′ (U (x)))U ′(x) = Λ′(x)
Λ(X)

for all x ∈ (0, X) and thus

G′ (ψ) = G′ (U (w (ψ))) =
Λ′(w(ψ))

u(w(ψ))Λ(X)
=

Λ′(w(ψ))

u(w(ψ))Λ(X)
for all ψ ∈ (0,Ψ)

which gives the density of G′ in terms of the function u defined in Lemma 1. �

Proof. (of Theorem 2) Without loss of generality, given the assumed symmetry, let q(·) be the
density of minus price changes, so that q(x)Na = Λ(x)f(x). Denote the minus price changes by
∆p. We will use four equations for x > 0:

f ′′(x) =
2

σ2
q(x)Na

f ′(x) = f ′(X)−
∫ X

x

f ′′(t)dt

f(x) = −
∫ X

x

f ′(t)dt

σ2 = NaV ar(∆p)

ii



where we have used that f(X) = 0. Combining the first and the second equation we have ,

f ′(x) = f ′(X)− 2

σ2
Na

∫ X

x

q(x)dx = f ′(X)− 2

σ2
Na

(
1 + f ′(X)

σ2

2Na

−Q(x)

)
=

2

σ2
Na(Q(x)− 1)

where we have used that limQ(x)→ 1 + f ′(X) σ2

2Na
as x→ X. Integrating further,

f(x) =
2

σ2
Na

∫ ∞
x

(1−Q(t))dt

Now using the last equation,

f(x) =
2

V ar(∆p)

∫ ∞
x

(1−Q(t))dt

Using the identity q(x)Na = Λ(x)p̄(x) once again,

Λ(x) =
NaV ar(∆p)

2

q(x)∫∞
x

(1−Q(t))dt

Finally, we check whether Λ(X) = κ <∞. If X <∞, then using L’Hopital we get

Λ(X) =
NaV ar(∆p)

2

q′(X)

−f ′(X)σ
2

2

<∞

If X =∞, we apply L’Hopital rule twice, since q(x)→ 0 and Q(x)→ 1 as x→∞. We obtain:

Λ(X) =
NaV ar(∆p)

2
lim
x→∞

q′′(x)

q(x)

which is finite given our assumption on the tail of q. This completes the proof. �

Proof. (of Theorem 3). First note that the identity in equation (13), N · V ar = σ2, holds in the
model. Let x(0) = 0. Consider the process z(t) ≡ x(t)2 − σ2 t for t ≥ 0. Using Ito’s lemma we can
verify that the drift of x2 is σ2, and hence z(t) is a Martingale. Let τ be a stopping time, i.e. an
instant where a price adjustment occurs (anywhere in the state space, including the boundaries),
so that x is reset at x(0) = 0. By the optional sampling theorem z (τ), the process stopped at τ ,

is also a martingale. Then E
[
z(τ)

∣∣∣ x(0)
]

= E
[
x(τ)2

∣∣∣ x(0)
]
− σ2E

[
τ
∣∣∣ x(0)

]
= x(0) = 0. Since

N = 1/E
[
τ
∣∣∣ x(0)

]
and V ar = E

[
x(τ)2

∣∣∣ x(0)
]

we get the identity in equation (13).

For simplicity, we focus next on the case with unbounded support X̄ → ∞ (the logic for the
case with bounded support is identical but the equations are slightly more cumbersome). Using
the definition of the density of price changes in equation (15) we can rewrite the identity as∫ ∞

−∞
x2Λ(x)f(x)dx = σ2 (52)
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it is then straightforward to write the formula for kurtosis over 6Na as:

Kur

6Na

=

∫∞
−∞ x

4Λ(x)f(x)dx

6
(∫∞
−∞ x

2Λ(x)f(x)dx
)2 =

∫∞
−∞ x

4Λ(x)f(x)dx

6σ4

where the last passage uses equation (52). Using the Kolmogorov forward equation,∫ ∞
−∞

x4Λ(x)f(x)dx =
σ2

2

∫ ∞
−∞

x4f ′′(x)dx

Integrating by parts twice gives∫ ∞
−∞

x4Λ(x)f(x)dx = 6σ2

∫ ∞
−∞

x2f(x)dx

This allows us to write

Kur

6Na

=

∫∞
−∞ x

2f(x)dx

σ2
(53)

Recall that we have a system of two equations:

Λ(x)f(x) =
σ2

2
f ′′(x) , Λ(x)m(x) =

σ2

2
m′′(x)− x

Eliminate Λ to get:

σ2

2

m(x)f ′′(x)

f(x)
= −x+

σ2

2
m′′(x)

Multiply both sides by f(x)x and rearrange:

σ2

2
[m(x)f ′′(x)−m′′(x)f(x)]x = −x2f(x)

Integrate both sides from 0 to ∞:

σ2

2

∞∫
0

[m(x)f ′′(x)−m′′(x)f(x)]xdx = −
∞∫

0

x2f(x)dx

Perform integration by parts in the left-hand side using the fact that [m(x)f ′(x)−m′(x)f(x)]′ =
m(x)f ′′(x)−m′′(x)f(x):

σ2

2

∞∫
0

[m(x)f ′′(x)−m′′(x)f(x)]xdx =
σ2

2

[m(x)f ′(x)−m′(x)f(x)]x

∣∣∣∣∣
∞

0

−
∞∫

0

[m(x)f ′(x)−m′(x)f(x)]dx


=− σ2

∞∫
0

m(x)f ′(x)dx
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where the last equality uses integration by parts again. We used E[m(x)] < ∞ and m(·) being
almost linear at infinity to justify setting f ′(x)m(x)x and f(x)m′(x)x at infinity to 0. Hence, we
have

σ2

∞∫
0

m(x)f ′(x)dx =

∞∫
0

x2f(x)dx

Plugging this result in equation (53) we have

Kur

6Na

=

∫ ∞
−∞

m(x)f ′(x)dx

It follows from the definition ofM(δ) in equation (33) that the right hand side is the first derivative
of the CIR with respect to δ, evaluated at δ = 0, or M′(δ). This completes the proof. �

Proof. (of Theorem 4) The proof follows the same steps used for Theorem 1.

Proof. (of Theorem 5) The proof will proceed in three steps.
Step 1. As a first step we show how to recover the value µ and σ2 based on the distribution

of ∆p. The first moment of ∆p, together with the frequency N gives µ from E [∆p] = −µNa. To
see this, let τ the stopping time at which prices are changed, so we have ∆p = x∗ − x(τ) with
x(0) = x∗ and dx = µdt+ σdW . Let y(t) = x∗ − x(t) + µt. Note that y is a Martingale, and thus
E[y(τ)] = 0 = E[x∗ − x(τ)] + µE[τ ] or NaE[∆p] = −µ. To obtain σ2 we prove that the moment
generating function of the distribution of price changes must equal one when evaluated at 2µ/σ2,
i.e.:

M∆p

(
2µ

σ2

)
=

∫
e

2µ

σ2
∆pdQ(∆p) = 1

where M∆p(·) is the moment generating function of the distribution of prices. To see why this has
to be the case, we first define Fn as:

Fn ≡
1

Na

[∫ x

x

σ2

2
f ′′(x)(x∗ − x)ndx− σ2

2
f ′(x)(x∗ − x)n|xx

]
Using the KFE equation, we get

Fn =
1

Na

∫ x

x

[Λ(x)f(x) + µf ′(x)] (x∗ − x)ndx− σ2

2Na

f ′(x)(x∗ − x)n|xx

=

∫ x

x

(x∗ − x)nq(x∗ − x)dx− σ2

2Na

f ′(x)(x∗ − x)n|xx +
1

Na

µ

∫ x

x

f ′(x)(x∗ − x)ndx

Using the definition of q and integrating by parts:

Fn =

∫ x

x

(x∗ − x)nq(x∗ − x)dx− σ2

2Na

f ′(x)(x∗ − x)n|xx

+
2µ

σ2

1

n+ 1

1

Na

[∫ x

x

σ2

2
f ′′(x)(x∗ − x)n+1dx− σ2

2
f ′(x)(x∗ − x)n+1|xx

]

v



This implies

Fn = E [∆pn] +
2µ

σ2

1

n+ 1
Fn+1

with

F1 =
1

Na

[∫ x

x

σ2

2
(x∗ − x)f ′′(x)dx− σ2

2
f ′(x)(x∗ − x)|xx

]
=

1

Na

[∫ x

x

σ2

2
f ′(x)dx+

σ2

2
(x∗ − x)f ′(x)|xx −

σ2

2
f ′(x)(x∗ − x)|xx

]
=

σ2

2Na

f(x)|xx = 0

Iterating the recursive expression for Fn with this starting condition and assuming that µ 6= 0,

0 =
2µ

σ2
F1 =

∞∑
j=1

(
2µ

σ2

)j
1

j!
E
[
(∆p)j

]
Now the moment generating function can be written as

M∆p(ϕ) ≡
∫
eϕ∆pdQ(∆p) = 1 +

∞∑
j=1

ϕj

j!

∫
(∆p)jdQ(∆p)

Hence M∆p(
2µ
σ2 ) = 1.

Step 2. As an intermediate step we develop an alternative expression for Na, which will be
used below. By a mass preservation argument in the time dependent version of the Kolmogorov
equation, continuity of f at x = x∗, and the boundary conditions at x = x and x = x,

0 =
σ2

2
[f ′(x)− f ′(x∗+) + f ′(x∗−)− f ′(x)]−

∫ x

x

Λ(x)f(x)dx

Replacing the expression for Na we obtain Na = σ2

2
[f ′(x∗−)− f ′(x∗+)].

Step 3. Now we turn to obtain the invariant distribution of of price gaps f . Using the definition
of the density of price changes into the Kolmogorov forward equation for any x ∈ (x, x)/{x∗},

f ′′(x) =
2

σ2
[f ′(x)µ+ Λ(x)f(x)] =

2µ

σ2
f ′(x) +

2Na

σ2
q(x∗ − x)

which is a non-homogenous first order ordinary differential equation with constant coefficient.
Letting a ≡ f ′(x∗+) < 0, and a ≡ f ′(x∗−) > 0, we can solve the initial value problem for f ′ using
the definition of the function R in the statement of the theorem:

f ′(x; a) = e
2µ
σ2 (x−x∗)

[
a− 2Na

σ2
R (0, x∗ − x)

]
for x ∈ (x, x∗]

f ′(x; a) = e
2µ
σ2 (x−x∗)

[
a+

2Na

σ2
R (x∗ − x, 0)

]
for x ∈ [x∗, x)

vi



which can be verified to solve the first order linear o.d.e. for f ′ in each of the segments. Hence,

f(x) = f(x∗) +
2Na

σ2

∫ x∗

x

e
2µ
σ2 (z−x∗)R(0, x∗ − z)dz +

aσ2

2µ

[
e

2µ
σ2 (x−x∗) − 1

]
for x ∈ (x, x∗]

f(x) = f(x∗) +
2Na

σ2

∫ x

x∗
e

2µ
σ2 (z−x∗)R(x∗ − z, 0)dz +

aσ2

2µ

[
e

2µ
σ2 (x−x∗) − 1

]
for x ∈ [x∗, x)

We now derive two equations that a and a must satisfy. Imposing f(x) = f(x) = 0 and that f
is continuous at x = x∗, we get

f(x∗) =

∫ x∗

x

f ′(x; a)dx = −2Na

σ2

∫ x∗

x

e
2µ
σ2 (x−x∗)R (0, x∗ − x) dx+

aσ2

2µ

[
1− e

2µ

σ2
(x−x∗)

]
= −

∫ x

x∗
f ′(x; a)dx = −2Na

σ2

∫ x

x∗
e

2µ
σ2 (x−x∗)R (x∗ − x, 0) dx− aσ2

2µ

[
e

2µ
σ2 (x−x∗) − 1

]
Thus, the system of two linear independent equations in a and a is:

2Na

σ2

[∫ x∗

x

e
2µ
σ2 (x−x∗)R (0, x∗ − x) dx−

∫ x

x∗
e

2µ
σ2 (x−x∗)R (x∗ − x, 0) dx

]

= a

1− e
2µ
σ2 (x−x∗)

2µ/σ2

+ a

e2µ
σ2 (x−x∗) − 1

2µ/σ2


2Na

σ2
= a− a

To arrive at the expressions in the statement of the theorem, replace 2µ/σ2 with φ and normalize
a and a by 2Na/σ

2:[∫ x∗

x

eφ(x−x∗)R (0, x∗ − x) dx−
∫ x

x∗
eφ(x−x∗)R (x∗ − x, 0) dx

]
= a

[
1− eφ(x−x∗)

φ

]
+ a

[
eφ(x−x∗) − 1

φ

]
1 = a− a

The expression for f(x∗) is now

f(x∗) = −2Na

σ2

(∫ x

x∗
eφ(x−x∗)R (x∗ − x, 0) dx− a

φ

[
eφ(x−x∗) − 1

])
The expressions for f(x) on both sides of x∗ are

f(x) = f(x∗) +
2Na

σ2

(∫ x∗

x

eφ(z−x∗)R(0, x∗ − z)dz +
a

φ

[
eφ(x−x∗) − 1

])
for x ∈ (x, x∗]

f(x) = f(x∗) +
2Na

σ2

(∫ x

x∗
eφ(z−x∗)R(x∗ − z, 0)dz +

a

φ

[
eφ(x−x∗) − 1

])
for x ∈ [x∗, x)

It is now straightforward to change the variables from x to y = x − x∗ and go from f(x) to
f̃(y + x∗) = f(x)/(2Na/σ

2). This completes the proof. �
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B Proofs of the Propositions

Proof. (of Proposition 1) The details are in Section G. The proof follows the same steps as that
of Theorem 1.

Proof. (of Proposition 2) To show this let the density of the invariant distribution be f̃(z) =
f(z/b)/b. This function solves the KFE for Λ̃ and σ̃2. This can be verified using that f solves the
KFE for Λ and σ2. Since Na = −σ2f ′(0) and Ña = −σ̃2f̃ ′(0) then it implies that Ña = Na for any
b. Also we can see that q̃(z) = q(z/b)/b, by using q(x) = Λ(x)f(x)/Na and q̃(z) = Λ̃(z)f̃(z)/Ña

for all z ∈ (−X b,X b). Using the formula for a change on variable, and the relationship between

q and q̃ and of Λ and Λ̃ we get
∫ X
−X Λ(x)f(x)dx =

∫ X̃
−X̃ Λ̃(z)f̃(z)dz, and thus s̃ = s. �

Proof. (of Proposition 3) We start by describing the o.d.e and boundary that f and fk satisfy.
For f we have:

Λ(x)f(x) =
σ2

2
f ′′(x) for all x ∈ (0, X)

f(X) = 0

1/2 =

∫ X

0

f(x)dx

For fk we have

Λ(x)fk(x) =
σ2

2
f ′′k (x) for all x ∈ (0, X)

kf(x) =
σ2

2
f ′′k (x) for all x ∈ (X,∞)

1/2 =

∫ X

0

fk(x)dx+

∫ ∞
X

fk(x)dx

and that pk has a continuous first derivative at x = X. We can then solve for fk for x > X,
obtaining fk(x) = fk(X)e−η(x−X) for all x > X, where η =

√
2k/σ. Thus, using the required

continuity we can write:

Λ(x)fk(x) =
σ2

2
f ′′k (x) for all x ∈ (0, X)

f ′k(X) = −ηfk(X)

1/2 =

∫ X

0

fk(x)dx+ fk(X)/η

Now consider the solutions of the homogenous second order o.d.e. given by σ2/2f ′′(x) = Λ(x)f(x)
for x ∈ [0, X]. Given the assumption that Λ is continuous, we know that the solution is given
by linear combinations of two linearly independent functions g1, g2 defined [0, X]. This functions
depend on the interval (0, X), the constant σ > 0 only. Thus we can write the solution of each of
the two o.d.e. above as:

fk(x) = akg1(x) + bkg2(x)

f(x) = ag1(x) + bg2(x)
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for all x ∈ [0, X]. The coefficients ak, bk, a, b can be chosen to satisfy the two boundary conditions
written for f and fk. We can use the homogeneity of the boundary conditions and preliminary set
ak = a = 1, drop the boundary conditions given by the integral equation for each system, use b̄, bk
to solve the remaining boundary conditions at X, and then find a, ak and rescale b, bk to satisfy
the two integral equations. To do so, let b̂ = b/a and b̂k = ak/bk. Thus we write the remaining
boundary conditions:

f(X) = 0 becomes 0 = g1(X) + b̂g2(X)

f ′k(X) = −ηfk(X) becomes g′1(X) + b̂kg
′
2(X) = −η

[
g1(X) + b̂kg2(X)

]
equivalently we can write:

b̂ = −g1(X)

g2(X)
and b̂k = −ηg1(X) + g′1(X)

ηg2(X) + g′2(X)

Furthermore let Ii ≡
∫ X

0
gi(x)dx for i = 1, 2 so that we can write the remaining boundary conditions

as:

1/2 = aI1 + bI2 =⇒ a =
1

2
(
I1 + I2b̂

)
1/2 = akI1 + bkI2 + ak

g1(X)

η
+ bk

g2(X)

η
=⇒ ak =

(
I1 + b̂kI2 +

g1(X)

η
+ b̂k

g2(X)

η

)
/2

Note that, given the expression for η, taking k →∞ it is equivalent to take η →∞. Then, using
L’Hopital in the second equation we obtain that b̂k → b̂, which them implies that ak → a and
finally bk → b. Now we can compare fk and f to obtain:

|fk(x)− f(x)| = |(ak − a)|g1(x) + (bk − b)g2(x)|
≤ |ak − a||g1(x)|+ |bk − b||g2(x)| for all x ∈ [0, X]

Since g1 and g2 are continuous in x, then they are bounded in [0, X]. Thus as k → ∞ we have
that fk converges uniformly to f . �

Proof. (of Proposition 4) Absolute continuity ofQ(·) follows from continuity of f(·) on (−X,X)/{0}
and boundedness of Λ(·) on (−X,X). Symmetry of q(·) follows from both f(·) and Λ(·) being
symmetric, and its continuity follows from the continuity of f(·).

That Q(·) is fully identified by all its moment requires either X < ∞ or the existence of its
moment generating function in some neighborhood of zero when X =∞. This is Theorem 2.3.11
in Casella and Berger (2002). Take the case X = ∞. We will show the existence of the moment
generating function in a neighborhood of zero, which amounts to convergence of a series

∞∑
n=0

(ia)nE[xn]

n!

for some a > 0. Due to symmetry, all odd moments are zero, so we will prove that the even
moments grow no faster than the factorial.
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Consider an even moment E[x2k+2]:

E
[
x2k+2

]
=

∞∫
−∞

x2k+2q(x)dx =
2

Na

∞∫
0

x2k+2Λ(x)f(x)dx =
σ2

Na

∞∫
0

x2k+2f ′′(x)dx

This uses the definition of and symmetry q(·) and the KFE. Integrate the right-hand side by parts
twice:

σ2

Na

∞∫
0

x2k+2f ′′(x)dx =
σ2(2k + 2)(2k + 1)

Na

∞∫
0

x2kf(x)dx

Here we used the fact that, due to Assumption 1, Λ(·) is bounded away from zero for x > xH ,
so the decay rate of q(·) is no slower than exponential. This drives the intermediate terms from
integration by parts to zero.

Now we will prove that

∞∫
0

x2kf(x)dx ≤ ξ

∞∫
0

x2kΛ(x)f(x)dx

for some number ξ that does not depend on k. Two cases are interesting. First is when there is a
number λ1 > 0 such that Λ(x) > λ with probability one with respect to the measure defined by
f(·). In this case,

∞∫
0

x2kf(x)dx

∞∫
0

1

Λ(x)
x2kΛ(x)f(x)dx <

1

λ

∞∫
0

x2kΛ(x)f(x)dx

and we are done. Now assume, on the contrary, for any positive number λ there is a positive
measure (corresponding to f(·)) of x such that Λ(x) < λ. Recall that, by Assumption 1, there
exist xH > 0 and λ > 0 such that Λ(x) > λ for x > xH . The there exists a pair of numbers (λ2, x2)
with and two sets A1 and A2 such that A1 = {x : Λ(x) < λ2}, A2 = [x2,∞), the measures of A1

and A2 associated with f(·) are equal to F > 0, and

∫
A1

FΛ(x)−
∫

A1∪A2

Λ(x)f(x)dx

 f(x)dx = −
∫
A2

FΛ(x)−
∫

A1∪A2

Λ(x)f(x)dx

 f(x)dx (54)

To see why these sets exist, take first x2 = xH . If there is no λ2 < λ such that the measure of
{x : Λ(x) < λ2} is equal to [x2,∞), increase x2 until there is. Since X = ∞, the measure of
[x2,∞) decreases continuously as x2 increases, so for any λ1 < λ the value of x2 ≥ xH such that
the measures of A2 and A1 are equal exists.
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Now consider the difference

F

∫
A1∪A2

x2kΛ(x)f(x)dx−
∫

A1∪A2

Λ(x)f(x)dx

∫
A1∪A2

x2kf(x)dx

=

∫
A1∪A2

FΛ(x)−
∫

A1∪A2

Λ(x)f(x)dx

x2kf(x)dx

=

∫
A1

FΛ(x)−
∫

A1∪A2

Λ(x)f(x)dx

x2kf(x)dx+

∫
A2

FΛ(x)−
∫

A1∪A2

Λ(x)f(x)dx

x2kf(x)dx

Consider the last line. We know from equation (54) that the expression in brackets under the first
integral is negative, and that under the second integral is positive. This is because they are the
sum to zero, and Λ(x) is greater on A2 then on A1. We also know that x ≤ xH on A1 and x ≥ xH

on A2. Hence,

∫
A1

FΛ(x)−
∫

A1∪A2

Λ(x)f(x)dx

x2kf(x)dx+

∫
A2

FΛ(x)−
∫

A1∪A2

Λ(x)f(x)dx

x2kf(x)dx

≥
(
xH
)2k

∫
A1

FΛ(x)−
∫

A1∪A2

Λ(x)f(x)dx

 f(x)dx+

∫
A2

FΛ(x)−
∫

A1∪A2

Λ(x)f(x)dx

 f(x)dx


= 0 (55)

This insures∫
A1∪A2

x2kf(x)dx ≤ F∫
A1∪A2

Λ(x)f(x)dx

∫
A1∪A2

x2kΛ(x)f(x)dx = ξ1

∫
A1∪A2

x2kΛ(x)f(x)dx

At the same time,∫
R+/{A1∪A2}

x2kf(x)dx ≤ 1

λ2

∫
R+/{A1∪A2}

x2kΛ(x)f(x)dx = ξ2

∫
R+/{A1∪A2}

x2kΛ(x)f(x)dx

Hence,

∞∫
0

x2kf(x)dx ≤ max{ξ1, ξ2}
∞∫

0

x2kΛ(x)f(x)dx = max{ξ1, ξ2}E
[
x2k
]

Pluggin this to what was obtained before,

E
[
x2k+2

]
≤ σ2(2k + 2)(2k + 1) max{ξ1, ξ2}

Na

E
[
x2k
]

This implies that the series in question converges, and thus the moment generating function exists,
at least in the circle of the radius

√
Na/(σ2 max{ξ1, ξ2}). �
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Proof. (of Proposition 5) Under the identification assumptions,

E[(∆pit)
j(∆pis)

k]

E[(∆pit)j
′(∆pis)k

′ ]
=

E[bj+ki (∆p̃t)
j(∆p̃s)

k]

E[bj
′+k′

i (∆p̃t)j
′(∆p̃s)k

′ ]
=

E[(bi)
j+k]E[(∆p̃t)

j]E[(∆p̃s)
k]

E[(bi)j
′+k′ ]E[(∆p̃t)j

′ ]E[(∆p̃s)k
′ ]

=
E[(∆p̃t)

j]E[(∆p̃t)
k]

E[(∆p̃t)j
′ ]E[(∆p̃t)k

′ ]

The first equality uses ∆pit = bi∆p̃t. The second one uses mutual independence of bi, ∆p̃t, and
∆p̃s. The last one uses the fact that ∆p̃t and ∆p̃s are identically distributed. �

Proof. (of Proposition 6) Start with Q(x):

Q(x) = P{∆pit ≤ x} =

∞∫
0

P
{

∆p̃t ≤
x

bi

∣∣∣bi} dH(bi) =

∞∫
0

P
{

∆p̃t ≤
x

bi

}
dH(bi) (56)

The last equality uses the mutual independence of ∆p̃t and bi. Differentiate with respect to x:

q(x) = ∂xP{∆pit ≤ x} =

∞∫
0

1

bi
∂xP

{
∆p̃t ≤

x

bi

}
dH(bi)

Evaluate at x = 0:

q(0) =

∞∫
0

1

bi
q̃(0)dH(bi) = E[b−1

i ] q̃(0) (57)

Now turn to Cpooled:

Cpooled =
q(0)

2

V ar(∆pit)

E[|∆pit|]
=
q̃(0)

2

E[b−1
i ]E[b2

i ]

E[bi]

V ar(∆p̃t)

E[|∆p̃t|]
= C E[b−1

i ]E[b2
i ]

E[bi]

Hence,

C = C E[bi]

E[b−1
i ]E[b2

i ]
= Cpooled

(
1 +

Cov(b−1
i , b2

i )

E[b−1
i ]E[b2

i ]

)
< Cpooled

That the correction multiplier is smaller then one follows from the correlation between 1/bi and
b2
i being negative. Next we find the expression for the correction as a function of the moments:

E[|∆pit|]
E[|∆pit|−1]E[|∆pit|]

=
E[bi]

E[b−1
i ]E[b2

i ]

E[|∆p̃t|]
E[|∆p̃t|−1]E[|∆p̃t|2]

=
E[bi]

E[b−1
i ]E[b2

i ]

E[|∆pit|]
E[|∆pit|−1|∆pis|2]

Hence,

E[bi]

E[b−1
i ]E[b2

i ]
=

E[|∆pit|−1|∆pis|2]

E[|∆pit|−1]E[|∆pit|]

This completes the proof. �
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Proof. (of Lemma 3) Denote Sn(t) ≡ ∂n

∂tn
S(t). We will derive the following recursion:

S(n)(t) = E
[
Fn(x(t))e−

∫ t
0 Λ(x(s))ds |x(0) = 0

]
for all t ≥ 0 and all n = 1, 2, . . . (58)

for a sequence of functions Fn : R → R. For n = 1 it follows from differentiating equation (76)
with respect to t:

S(1)(t) = −E
[
Λ(x(t))e−

∫ t
0 Λ(x(s))ds |x(0) = 0

]
(59)

thus F1(x) = −Λ(x). For the induction step, assume that equation (58) hold and we will differen-
tiate it with respect to t. To do this, since Fn(x(t)) is an Ito’s process, and thus not differentiable
with respect to time, we use Ito’s lemma for the product of two Ito’s process, namely Fn(x(t))

and Z(t) ≡ e−
∫ t
0 Λ(x(s))ds, the second one being a degenerate one, since it has bounded varia-

tion. We then use that dFn(x(t)) = ∂xxFn(x(t))σ
2

2
dt + ∂xFn(x(t)σdW , since x has no drift, and

dZ(t) = −Λ(x(t))Z(t)dt. Thus,

S(n+1)(t) ≡ lim
∆↓0

S(n)(t+ ∆)− S(n)(t)

∆

= lim
∆↓0

1

∆
E [Fn(x(t+ ∆))Z(t+ ∆)− Fn(x(t))Z(t) |x(0) = 0]

= E
[(

σ2

2
∂xxFn(x(t))− Λ(x(t))Fn(x(t))

)
Z(t) |x(0) = 0

]
= E

[(
σ2

2
∂xxFn(x(t))− Λ(x(t))Fn(x(t))

)
e−

∫ t
0 Λ(x(s))ds |x(0) = 0

]
which give us a recursion for Fn:

Fn+1(x) =
σ2

2
∂xxFn(x)− Λ(x)Fn(x) for all x (60)

Finally, evaluating the nth derivatives of S at t = 0 we have:

S(n)(0) = Fn(0) and all n = 1, 2, . . . (61)

This completes the proof. �

Proof. (of Proposition 7) In the text. �

Proof. (of Proposition 8) Let the price gap distributions that correspond to Λ1 and Λ2 be f1 and
f2. Recall that for a fixed Na and σ2 we have f ′1(0) = f ′2(0) and it is sufficient to compare∫ ∞

0

f1(x)x2dx against

∫ ∞
0

f2(x)x2dx

(1) We first claim that the graph of the function f1(x)−f2(x) cannot cross the x−axis from above.
That is, there is no segment [a, b] such that f1(x)− f2(x) = 0 on this segment, f1(x)− f2(x) > 0
to the left of a, and f1(x)− f2(x) > 0 to the right of b. Note that this nests the case when a = b
and hence [a, b] is a single point. Suppose such a segment exists. Then one of the two statements
is true: either Λ1(x) ≥ Λ2(x) for all x ≤ a or Λ1(x) ≤ Λ2(x) for all x ≥ b.
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In the first case, the graph of f1(x) − f2(x) never crosses the x−axis again to the left of a. If
it does cross it at some c < a, on (c, a) we have f1(x) > f2(x) and hence Λ1(x)f1(x) > Λ2(x)f2(x),
implying f ′′1 (x) > f ′′2 (x). But this contradicts f ′1(c) − f ′2(c) ≥ 0 and f ′1(a) − f ′2(a) ≤ 0 holding
simultaneously. Hence, for all x < a we have f1(x) > f2(x), implying Λ1(x)f1(x) > Λ2(x)f2(x)
and f ′′1 (x) > f ′′2 (x) on (0, a). But since f ′1(a) ≤ f ′2(a), in this region we have f ′1(x) < f ′2(x), which
contradicts f ′1(0) = f ′2(0).

In the second case, the graph of f1(x)−f2(x) never crosses the x−axis again to the right of b. If
it does cross it at some d > b, on (b, d) we have f1(x) < f2(x) and hence Λ1(x)f1(x) < Λ2(x)f2(x),
implying f ′′1 (x) < f ′′2 (x). But this contradicts f ′1(b) − f ′2(b) ≤ 0 and f ′1(d) − f ′2(d) ≥ 0 holding
simultaneously. Hence the graph of f1(x)− f2(x) never crosses the x−axis again to the right of b,
which already rules out X1 > X2. Moreover, if X1 = X2 ≤ ∞, it must hold that f ′1(X1) ≥ f ′2(X1),
which contradicted by f ′1(x) < f ′2(x) for x > b. The latter follows from f ′1(b) − f ′2(b) ≤ 0 and
f ′′1 (x) < f ′′2 (x) for x > b.
(2) Since the graph of the function f1(x)− f2(x) cannot cross the x−axis from above, it can only
cross the x−axis from below. We know that there must be at least one crossing, because f1 and
f2 are continuous and both integrate to one. Hence, the function f1(x) − f2(x) is non-positive
until some point ang non-negative after some point until X1. Morover, there are segments of strict
positivity ang strict negativity. Hence,∫ X1

0

(f1(x)− f2(x))x2dx > 0

This completes the proof. �

Proof. (of Corollary 2) Fix X and let Λ1(x) ≡ λ1 on (0, X) correspond to the Calvo+ model. The
other hazard function, Λ2, is at least somewhere strictly increasing. We claim it cannot be that
Λ2(x) ≥ λ1 for all x. Assume toward a contradiction that this is the case.

Then it cannot be that the graph of f2(x) − f1(x) crosses the x−axis from below on (0, X).
If it does, there is a segment [a, b] such that f2(x) − f1(x) is positive to the right of b. But then
the graph of f2(x) − f1(x) never crosses the x−axis on (b,X] again, because if it did cross it at
some d > b, we would have Λ2(x)f2(x) > Λ1(x)f1(x) on (b, d), implying f ′′2 (x) > f ′′1 (x) on (b, d),
which contradicts f ′2(b) ≥ f ′1(b) and f ′2(d) ≤ f ′1(d) holding simultaneously. But we know that
f1(X) = f2(X) = 0, which yields a contradiction.

Neither can it be that the graph of f2(x)− f1(x) crosses the x−axis from above on (0, X). If it
does, there is a segment [a, b] such that f2(x)−f1(x) is positive to the left of a. But then the graph
of f2(x)−f1(x) never crosses the x−axis on [0, a) again, because if it did cross it at some c < a, we
would have Λ2(x)f2(x) > Λ1(x)f1(x) on (c, a), implying f ′′2 (x) > f ′′1 (x) on (c, a), which contradicts
f ′2(a) ≤ f ′1(a) and f ′2(c) ≥ f ′1(c) holding simultaneously. Hence, Λ2(x)f2(x) > Λ1(x)f1(x) on (c, a),
implying f ′′2 (x) > f ′′1 (x) on (c, a). But together with f ′2(a) ≤ f ′1(a) this contradicts f ′1(0) = f ′2(0).

Hence, the graph of f2(x) − f1(x) does not cross the x−axis from above or below on (0, X).
But Λ2 is not identically equal to λ1, so f2 cannot coincide with f1 everywhere. This yields the
contradiction. Now we know that Λ2(x) < λ1 for some x. Since Λ2 is non-decreasing, the conditions
of Proposition 8 are satisfy, and Λ1 generates a higher kurtosis of price changes. This completes
the proof. �

Proof. (of Corollary 3) Let X1 > X2 and let Λ1 and Λ2 be constants λ1 and λ2 on their intervals.
We claim that λ1 > λ2. Assume toward the contradiction λ1 ≤ λ2. We know that the graph of
the function f1(x)− f2(x) must cross the x−axis from below at some point, because f1(X2) > 0,
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f2(X2) = 0, and both f1 and f2 integrate to one. Hence, there is a point a such that f1(x) < f2(x)
to the left of a. Then the graph of f1(x) − f2(x) never crosses the x−axis on (0, a) again, since
if it did there would be a point c < a such that on (c, a) we have f1(x) < f2(x) and hence
Λ1(x)f1(x) < Λ2(x)f2(x), implying f ′′1 (x) < f ′′2 (x) everywhere on (c, a). The latter contradicts
f ′1(a) ≥ f ′2(a) and f ′1(c) ≤ f ′2(c) holding simultaneously.

But that the graph of f1(x) − f2(x) never crosses the x−axis on (0, a) again means that
f1(x) < f2(x) and hence Λ1(x)f1(x) < Λ2(x)f2(x), implying f ′′1 (x) < f ′′2 (x) everywhere on (0, a).
Together with f ′1(a) ≥ f ′2(a) this contradicts f ′1(0) = f ′2(0). Hence, λ1 > λ2. The pair Λ1 and Λ2

thus qualify for the Proposition 8, and Λ1 generates a higher kurtosis of price changes. Hence,
within the space of constant hazard functions with barriers higher X generate higher Kurtoses. By
Proposition 3, the kurtosis for X = ∞ is the limit of any sequence generated by constant hazard
functions with Xk →∞. Without loss of generality, the sequence can be constructed as monotone,
so the kurtosis for X = ∞ is higher then any its element. But the kurtosis for an arbitrary Λ is
majorized by that corresponding to a constant Λ̃ with the same barrier. Hence, the kurtosis for a
constant Λ and X =∞ is the highest possible one. This completes the proof. �

Proof. (of Corollary 4) If the two hazard functions have the same curvature k(x), it means that

Λ1(x) = Λ1(0) + Λ′1(0)

x∫
0

e
∫ z
0
k(w)
w

dwdz

Λ2(x) = Λ2(0) + Λ′2(0)

x∫
0

e
∫ z
0
k(w)
w

dwdz

We have C1 > C2 if and only if Λ1(0) > Λ2(0). Using the same method as in the proof of
Corollary 2, we can show that, since the frequency of adjustment is the same, there exists a
z < X such that Λ1(z) < Λ2(z). Hence, Λ′1(0) < Λ′2(0), and Λ1(x) − Λ2(x) is a decreasing
function. The graphs of Λ1(·) and Λ2(·) thus only cross once, so they qualify for Proposition 8,
and Kurt1(∆p) > Kurt2(∆p). �

Proof. (of Proposition 9) Fix ν ≥ 0. In Lemma 4, we know that s increases in ρ, so it is sufficient
to show that Kurt(∆p) also does. For this purpose, take some ρ1 = 2κ1X

2
1/σ

2
1. They generate

f1(·) with

κ1

(
x

X1

)ν
f1(x) =

σ2
1

2
f ′′1 (x)

Now we want to increase ρ1 to some ρ2 > ρ1. This can induce multiple f2(·), since the distribution
of price gaps also depends on X and σ2. But the kurtosis of price changes only depends on ρ, so it
suffices to show that one of the densities f2(·) corresponding to ρ2 generates a higher Kurt(∆p).
Let the new ρ2 and the density f2(·) be such that σ2

1 = σ2
2 and f ′1(0) = f ′2(0). To compare the

Kurtosis in this case it is enough to evaluate the sign of∫ X2

0

f2(x)x2dx−
∫ X1

0

f1(x)x2dx =

∫ X2

0

(f2(x)− f1(x))x2dx

First, from the proof of Lemma 4 we know that p̂′2(0) < p̂′1(0), which implies X2 > X1 because
f ′2(0) = f ′1(0). This, in turn, implies that f2(x) − f1(x) is positive on (a,X2) for some a < X1.
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Since f1(·) and f2(·) integrate to the same number over their supports, there must be a crossing b,
to the left of which f1(x) > f2(x). At this crossing, f ′1(b) ≥ f ′2(b). Now we will argue that there is
no other crossing c < b.

Suppose, by way of contradiction, such a crossing exists. We have f ′2(c) ≤ f ′1(c) Subtract one
Kolmogorov forward equations from the other:

xν
[
κ2

Xν
2

f2(x)− κ1

Xν
1

f1(x)

]
=
σ2

2
[f2(x)− f1(x)]′′ (62)

Now there are two options: κ2/X
ν
2 ≥ κ1/X

ν
1 or κ2/X

ν
2 < κ1/X

ν
1 . In the first case, since f ′2(c) ≤

f ′1(c) and f2(x) > f1(x) to the left of c, from equation (62) we can conclude that f ′′2 (x) > f ′′1 (x) for
x < c, and hence f ′2(x) − f ′1(x) only increases as x decreases. But this contradicts f ′1(0) = f ′2(0).
In the second case, since f ′2(c) ≤ f ′1(c) and f2(x) < f1(x) to the right of c, from equation (62) we
can conclude that f ′′2 (x) < f ′′1 (x) for x > c, and hence f ′2(x)− f ′1(x) only decreases as x decreases.
But this contradicts f ′2(b) > f ′1(b). Hence, there is no crossing to the left of b.

This means that f2(x) − f1(x) is negative on [0, b) and positive on (b,X2). Since it integrates
to zero over this whole interval, its integral with any positive increasing function (such as x2) is
positive. Hence, the kurtosis is higher for ρ2 > ρ1. �

Proof. (of Lemma 4) By the definition of f̂(·), we have

f̂(z) =Xf(zX)

f̂ ′(z) =X2f ′(zX)

The function f̂(·) itself is derived from

ρΛ̂(z)f̂(z) = f̂ ′′(z) with f̂(1) = 0 and

∫ 1

0

f̂(z)dz =
1

2

Computing the Kurtosis,

Kurt(∆p) =
12Na

σ2

∫ X

0

f(x)x2dx = −12f ′(0)

∫ X

0

f(x)x2dx = −12f̂ ′(0)

∫ 1

0

f̂(z)z2dz

Since f̂(·) is completely determined by ρ and Λ̂(·), this quantity does not depend on other param-
eters. The share of adjustment between the boundaries is

s = 1− f ′(X)

f ′(0)
= 1− f̂ ′(1)

f̂ ′(0)
(63)

It also only depends on Λ̂(·) and ρ. The frequency of price changes is given by

Na =− σ2f ′(0) = − σ
2

X2
f̂ ′(0)

From this we have n̂(ρ) = −f̂ ′(0), so n̂(ρ) only depends on Λ̂ and ρ. In the case when ρ = 0 the
Kolmogorov forward equation is solved by a linear f̂(·), and the slope is −1 from the boundary
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condition and the normalization. Hence, n̂(0) = 1. Now take the other statistic:

Kurt(∆p)

6Na

=
2X2

σ2

∫ 1

0

f̂(z)z2dz =
X2

6σ2
m̂(ρ)

Here the function m̂(ρ) is twelve times the integral of f̂(z)z2 which only depends on Λ̂(·) and ρ.
In the case when ρ = 0 we have f̂(z) = 1− z for z ∈ [0, 1] and hence m̂(0) = 1.

Now fix the shape Λ̂(·). Consider two different values of ρ: ρ1 > ρ2. They generate two
distributions f̂1(·) and f̂2(·). Taking the difference between the Kolmogorov forward equations
that define them,

Λ̂(z)(ρ1f̂1(z)− ρ2f̂2(z)) = (f̂1(z)− f̂2(z))′′

It holds that f̂1(1) = f̂2(1), so there must be another point y ∈ (0, 1) where f̂1(y) = f̂2(y), because
f̂1(·) and f̂2(·) integrate to the same number. Moreover, this point must be a crossing, meaning
that f̂1(z)− f̂2(z) has different signs on to the left and to the right of it. Suppose f̂1(z)− f̂2(z) is
positive to the right of y. This means f̂ ′1(y) − f̂ ′2(y) ≥ 0. But then to the right of y it holds that
f̂ ′1(z)−f̂ ′2(z) > 0, since the left-hand side of equation (63) is positive. Hence, the difference between
f̂1(·) and f̂2(·) only increases to the right of y, and they cannot cross again at z = 1 > y. This is
a contradiction. The crossing is therefore such that f̂ ′1(y)− f̂ ′2(y) ≤ 0. But then to the left of y it
holds that f̂ ′1(z) − f̂ ′2(z) < 0, since the right-hand side of equation (63) is positive in this region.
The difference between f̂1(z) and f̂2(z) increases as z decreases, as does he difference between
f̂ ′1(z) and f̂ ′2(z). Hence, the crossing is unique and f̂ ′1(0) < f̂ ′2(0). Moreover, f̂1(z)− f̂2(z) > 0 for
z ∈ [0, y) and f̂1(z)− f̂2(z) < 0 for z ∈ (y, 1). From the latter fact together with f̂1(1) = f̂2(1) it
follows that f̂ ′1(1) > f̂ ′2(1). To summarize:

• there is a unique y ∈ (0, 1) such that f̂1(z) − f̂2(z) > 0 for z ∈ [0, y) and f̂1(z) − f̂2(z) < 0
for z ∈ (y, 1);

• f̂ ′1(0) < f̂ ′2(0)

• f̂ ′1(1) > f̂ ′2(1)

From the first bulletpoint it follows that m̂(·) decreases in ρ. This is because f̂1(·)− f̂2(·) integrates
to zero over (0, 1). Since it is positive until some z and negative afterwards, its integral with
increasing positive functions (such as z2) is always negative. From the second bulletpoint it follows
that n̂(·) increases in ρ, because n̂(ρi) = −f̂ ′i(0). From the second and the third bulletpoints
combined it follows that s increases in ρ, because f̂ ′(1) and f̂ ′(0) are both negative, so their ratio
decreases with ρ. This completes the proof. �

Proof. (of Proposition 10) First, observe that if v(x;µ) and {x(µ), x∗(µ), x(µ)} represent a solution
to the firm’s problem with drift µ, then x(µ) = −x(−µ), x∗(µ) = −x∗(−µ), x(µ) = −x(−µ), and
v(x;µ) = v(−x;−µ). This can be verified directly by plugging. Hence, Λ(x;µ) = Λ(−x;−µ),
because Λ(x;µ) = κG(v(x;µ)− v(x∗(µ);µ)).

Second, observe that if f(x;µ) solves the Kolmogorov forward equation for µ and Λ(x;µ)
then f(x;µ) = f(−x;−µ). This can again be verified directly by plugging and using Λ(x;µ) =
Λ(−x;−µ). An implication of this symmetry is that f ′(x;µ) = −f ′(−x;−µ). Hence, for the
adjustment frequency we can write
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Na(µ) =

x(µ)∫
x(µ)

Λ(x;µ)f(x;µ)dx+
σ2

2
f ′(x(µ);µ)− σ2

2
f ′(x(µ);µ) (64)

=

−x(−µ)∫
−x(−µ)

Λ(−x;−µ)f(−x;−µ)dx− σ2

2
f ′(−x(µ);−µ) +

σ2

2
f ′(−x(µ);−µ) (65)

=

x(−µ)∫
x(−µ)

Λ(x;−µ)f(x;−µ)dx+
σ2

2
f ′(x(−µ);−µ)− σ2

2
f ′(x(−µ);−µ) = Na(−µ) (66)

In a similar vein, using q(x) = Λ(x)f(x)/Na and hence q(x;µ) = q(−x;−µ), we can write for any
even moment of Q(·)

E
[
∆p2k

]
(µ) =

x(µ)∫
x(µ)

x2kq(x;µ)dx =

−x(−µ)∫
−x(−µ)

x2kq(−x;−µ)dx =

x(−µ)∫
x(−µ)

x2kq(x;−µ)dx = E
[
∆p2k

]
(−µ)

This holds for the fourth moment and variance, so it holds for Kurtosis as well. Hence, both
Kurt(∆p) and Na are symmetric in µ. They are also analytical functions of µ and can be written
as

Kurt(∆p) =
∞∑
i=0

aiµ
i (67)

Na =
∞∑
i=0

biµ
i (68)

The odd terms in these infinite sums must be zero, meaning

Kurt(∆p) = a0 + o(µ2) (69)

Na = b0 + o(µ2) (70)

This completes the proof. �

Proof. (of Proposition 11) The proof is in the statement of the proposition.

Proof. (of Proposition 12) Differentiating Ω

Ω′(δ) = X f(−X + δ) +

∫ −X+δ

−X
f(x) dx

taking δ → 0, since the invariant distribution satisfies f(−X) = 0, we have Ω′(0) = 0.
Now we seek to characterize limt↓0 ωδ(t; δ). We will show that limt↓0 ωδ(t; 0) =∞ if X <∞.
For this case we replace the initial condition by f(x+δ) by f(x)+f ′(x)δ where f is the density

of the invariant distribution. We can ommitt the contribution from the term f(x), since it is equal
to zero by virtue of being the invariant distribution.
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The KFE gives the following properties:

1. For all t > 0, since −X is an exit point, f(−X, t) = 0.

2. For all t > 0, there exists x(t) > −X, so that f(x, t) < f(x, 0) = f ′(x)δ > 0 for all
x ∈ [−X, x(t)]. This follows because f(x, t) is differentiable in x and f(−X, t) = 0.

3. For all x ∈ (−X, 0) we have: f(x, t) → f(x, 0) as t ↓ 0. This follows since f(x, t) is
differentiable in time t for all x.

From these properties we obtain that f ′(−X, t)→∞ as t ↓ 0. Hence, ωδ(0, 0) =∞. �

Proof. (of Proposition 13) The frequency of adjustment is given by

Na =

∫ ∞
−∞

f(x)(Λ(0) + κxν)dx =

∫ ∞
−∞

f̃(z)

(
Λ(0) + κ

(
z

η

)ν)
dz

=
κ

ην

∫ ∞
−∞

p(z)(α + zν)dz =
κ

ην
Ñ(ν, α) =

β2η2

2
Ñ(ν, α)

The flexibility index is

F = −
∫ ∞
−∞

x(Λ(0) + κxν)f ′(x)dx = −
∫ ∞
−∞

z

(
Λ(0) + κ

(
z

η

)ν)
p′(z)dz

= − κ

ην

∫ ∞
−∞

z(α + zν)f̃ ′(z)dz =
κ

ην

(∫ ∞
−∞

f̃(z)(α + zν)dz + ν

∫ ∞
−∞

p(z)zνdz

)
=

κ

ην

(
Ñ(ν, α)(1 + ν)− να

)
=
β2η2

2

(
Ñ(ν, α)(1 + ν)− να

)
The distribution of price changes is given by

q(x) =
f(x)(Λ(0) + κxν)

Na

=
η(̃ηx)(α + (ηx)ν)

Ñ(ν, α)

To compute the kurtosis, we need the fourth moment and the variance:

E[∆p4] =

∫ ∞
−∞

x4q(x)dx =
1

η4N(ν, α)

∫ ∞
−∞

z4p(z)(α + zν)dz

E[∆p2] =

∫ ∞
−∞

x2q(x)dx =
1

η2N(ν, α)

∫ ∞
−∞

z2p(z)(α + zν)dz

These expressions imply that E[∆p4]/E[∆p2]2 only depends on (ν, α). �

Proof. (of Proposition 14) Let f1(x) and f2(x) be the price gap distributions generated by Λ1(x)
and Λ2(x). Assume without loss that κ1 < κ2. We will first prove that Λ1(0) > Λ2(0) whenever Na

is the same in the two models. That Kurt1(∆p) > Kurt2(∆p) will then follow from Proposition 8.
Finally, we will show that F1 < F2.
(1) Suppose by contradiction that Λ1(0) ≤ Λ2(0). Then, Λ1(x) < Λ2(x) for all x > 0. Since Na

and σ2 are the same in the two models, we know that f ′1(0) = f ′2(0).
Suppose there is a point a > 0 at which the graph of f1(x) crosses that of f2(x) from below.

That is, f1(a) = f2(a) and f1(x) < f2(x) to the left of a. Then the graphs of f1(x) and f2(x) never
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cross again to the left of a. If they did cross at some point b < a, we would have f ′1(a) ≥ f ′2(a)
and f ′1(b) ≤ f ′2(b), so that f ′1(a)− f ′1(b) ≥ f ′2(a)− f ′2(b), but this is impossible, since f1(x) < f2(x)
and Λ1(x) < Λ2(x) on (a, b), while σ2f ′′i (x)/2 = Λi(x)fi(x) for i ∈ {1, 2}. Hence, f1(x) < f2(x) for
all x < a, which contradicts f ′1(0) = f ′2(0) for the same reason.

Suppose there is a point c > 0 at which the graph of f1(x) crosses that of f2(x) from above.
That is, f1(c) = f2(c) and f1(x) < f2(x) to the right of c. Then the graphs of f1(x) and f2(x) never
cross again to the right of c. If they did cross at some point d > c, we would have f ′1(d) ≥ f ′2(d)
and f ′1(c) ≤ f ′2(c), so that f ′1(d)− f ′1(c) ≥ f ′2(d)− f ′2(c), but this is impossible, since f1(x) < f2(x)
and Λ1(x) < Λ2(x) on (c, d), while σ2f ′′i (x)/2 = Λi(x)fi(x) for i ∈ {1, 2}. Hence, f1(x) < f2(x) for
all x > c, which contradicts f ′1(x)− f ′2(x) −→ 0 as x −→∞ for the same reason.

By what was said above, the graphs of f1(x) and f2(x) cannot cross, but they must, since these
functions integrate to the same number and have the same limit at infinity. Hence, Λ1(0) ≤ Λ2(0)
is impossible when σ2 and Na are the same in the two models.
(2) Now since κ1 < κ2 and Λ1(0) > Λ2(0), the two generalized hazard functions Λ1(x) and Λ2(x)
satisfy the conditions of Proposition 8. From this it follows that Kurt1(∆p) > Kurt2(∆p).
(3) The flexibility index for the power-plus case is given by

F =

∫ ∞
−∞

f(x)(Λ(x) + Λ′(x)x)dx = (1 + ν)Na − νΛ(0)

Since the two models deliver the same Na and ν is fixed, the one with a greater intercept has a
smaller F . This completes the proof. �

Proof. (of Proposition 15). We will make two observations, one about Λ and one about Fn
required to establish the two main results of the proposition. Then we will use Lemma 3 finish the
proof.

The first observation is that the symmetry of Λ around x = 0 implies that all the odd numbered
derivatives evaluated at x = 0 of Λ are equal to zero.

The second observation is a property of the function Fn(x) generated by the recursion in
equation (60), which can be written as:

Fn(x) = F̃n(x)−
(
σ2

2

)n−1
∂2n−2Λ(x)

∂x2n−2

where F̃n(·) depends only on the level of Λ(·) and at most the first 2n − 1 derivatives of Λ(·),
evaluated at x. This property can be established by induction. It is true for F1(x) = −Λ(x) for
n = 1. Now assume it holds for n, and we will show that it holds n + 1. To do so we compute
Fn+1 according to the recursion. On this computation, the first term is the product of σ2/2
times the sum of the second derivative of F̃n(x) with respect to x and of the second derivative of
− (σ2/2)

n−1
∂2n−2Λ(x)/∂x2n−2 with respect to x. The remaining term, −Λ(x)Fn(x), involves no

derivatives. This finishes the induction step, and thus established the desired result for Fn.

1. If we know the function Λ(x), then we can recursively compute Fn(x) from equation (60).
Evaluating this expressions at x = 0 and using equation (61) we obtain all the derivatives
of S evaluated at t = 0. In particular, these expressions only use the level and the even
derivatives of Λ evaluated at x = 0.If S is analytical, the expansion of S at t = 0 gives the
values everywhere.
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2. If we know the function S, we can take all its derivatives at t = 0, and by equation (61) we
know all the values of Fn(0) for n ≥ 1. Next we argue that the recursion in equation (60)
evaluated at x = 0, will give us all the even order derivatives of Λ evaluated at x = 0. Since
Λ is symmetric, all the derivatives of odd order, evaluated at x = 0, so we are only interested
in the even derivatives at x = 0. Next we argue that, algorithmically, we can recursively
recover the derivatives up to order 2n − 2 with {Fn(0)}forj = 1, . . . , 2n − 2. First we note
that Λ(0) and Λ′′(0) are given by F1(0) and F2(0). Now assume we know all the derivatives
up to order 2n − 2. Then, given the value of ∂n+1S(0)/∂tn+1 = Fn+1(0), the known values
for Λ(0), Fn(0), and σ2/, using the recursion we obtain the implied value for ∂xxFn(0). Using
that Fn depend at most on 2n−2 derivatives of Λ, as well as the particular expression derived
above, we obtain the value of ∂2nΛ(0)/∂t2n. This completes the induction step, and hence
establishes the desired property, and hence the level and all the derivatives of Λ at x = −0
have been recovered. Finally, since Λ is assumed to be analytical, an expansion around x = 0
gives its value at any other x.

This completes the proof. �

C Estimation and measurement issues

In this appendix we present our estimation algorithm and some additional results. The next
proposition shows that if we have a sample with mixed N different type of products all with the
same kurtosis but with different variance, then the kurtosis of the price changes of such a mixture
is higher than the kurtosis for each of them.

Proposition 11. Assume that ∆p is a mixture of N distributions, with weights {ωj}Nj=1.
Assume that for each distribution j, price changes have the same kurtosis K, but they may have
different variance Vj. Then

Kurt(∆p) =

∑
j ωjK V 2

j[∑
j ωjVj

]2 = K

∑
j ωjV

2
j[∑

j ωjVj

]2 = K

∑
j J(Vj)ωj

J
(∑

j Vjωj

) ≥ K

with strict inequality if the distribution of {Vj}Nj=1 is not degenerate, since J(V ) = V 2 is a strictly
convex function.

The proof is contained in the statement of the proposition. Next, we plot the symmetrized
histograms with fitted densities for two data cleaning procedures: the one that eliminates price
changes smaller then 2 cents in absolute value, and the one eliminating those smaller than 1 cent
in absolute value. The distributions are very close, with immaterial differences in the bars around
zero.

We use the method of moments to estimate the mixture of two Gamma distributions with the
parameters ω (the weight), (α1, β1) and (α2, β2). The moments of |∆p̃t| we use are denoted by γj,k:

γj,k =
E[|∆p̃t|j+k]

E[|∆p̃t|j]E[|∆p̃t|k
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Figure 6: Distribution of price changes in a narrow category

Smaller then 1 cent removed Smaller then 2 cents removed

Pooling all products for category 561 “Non-durable household goods”

For a mixture of two Gamma distributions with the weight ξ on the first one,

γj,k =

[
βj+k2 ω

Γ(α1 + j + k)

Γ(α1)
+ βj+k1 (1− ω)

Γ(α2 + j + k)

Γ(α2)

]
[
βj2ω

Γ(α1 + j)

Γ(α1)
+ βj1(1− ω)

Γ(α2 + j)

Γ(α2)

] [
βk2ω

Γ(α1 + k)

Γ(α1)
+ βk1 (1− ω)

Γ(α2 + k)

Γ(α2)

] (71)

Using these moments allows us to recover ω, α1, α2, and the ratio β1/β2. The exact values of β1 and
β2 are pinned down by the normalization E[|∆p̃t|] = 1. To estimate γj,k, we rely on Proposition 5:

E[|∆p̃t|j+k]
E[|∆p̃t|j]E[|∆p̃t|k

=
E[|∆pit|j+k]

E[|∆pit|j|∆pis|k]

For all seven product categories, we get four moments (γ̂1,1, γ̂2,1, γ̂3,1, and γ̂3,2) from the data and
solve the system of four analogs of equation (71). We minimize the sum of deivations squared with
equal weights. The results are presented in Table 2.

Category γ̂11 γ̂21 γ̂31 γ̂32 α̂1 α̂2 β̂1/β̂2 ω̂ α̂22

111 1.248 1.406 1.507 1.787 2.099 12.190 228.677 0.161 4.248

119 1.282 1.507 1.702 2.381 1.058 6.012 91.439 0.109 3.747

1212 1.242 1.476 1.786 2.9230 0.599 3.873 73.414 0.000 4.151

122 1.243 1.397 1.508 1.903 1.848 9.779 173.048 0.131 4.460

118 1.289 1.539 1.777 2.552 3.123 9.836 0.628 0.580 3.610

117 1.281 1.511 1.721 2.484 0.967 5.442 84.154 0.089 3.801

561 1.216 1.394 1.586 2.271 0.998 5.783 103.470 0.031 4.782

Table 2: Moments taken from the data and the estimated parameters
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Specializing to the case with a single Gamma distribution ω = 1 allows us to recover the
expressions for α in closed form. Consider γj,1 for some j:

γj,1 =
Γ(α + j + 1)Γ(α)

Γ(α + j)Γ(α + 1)
= 1 +

j

α

Hence,

α =
j

γj,1 − 1
(72)

Since we attach particula importance to the kurtosis, we would also like to use γ2,2:

γj,2 =
Γ(α + j + 2)Γ(α)

Γ(α + j)Γ(α + 2)
=

(α + j + 1)(α + j)

(α + 1)α
=

(
1 +

j + 1

α

)
γj,1
γ1,1

This leads to

α =
(j + 1)γj,2
γj,2γ1,1 − γj,1

(73)

Notice that β, the scale of the distribution, drops out from these expressions, because γj,k are
dimensionless moments. We use a linear combinations of expressions in equation (72) and equa-
tion (73) with γ̂j,1 for j ∈ {1, 2} and γ̂22 as estimators of α. Consistency requires the weights of
the combinations to sum to one, and we make them inversely proportional to the bootstrapped
variance of the estimators of summands. The estimates are presented in the last column of Table 2:
the estimate α̂22 is constructed from γ̂11, γ̂21, and γ̂22.

In Table 3 we present some additional statistics. First, we tabulate skewness of the distribution
of price changes to show that the distributions are close to symmetric. Then, we contrast the esti-
mates of the Kurtosis with the full sample and with the first two price changes only. The difference
between them is suggestive of a strong correlation between consecutive price changes (squared),
and of a weaker correlation between distant price changes. As can be seen from equation (27),
how much the underlying Kurtosis is different from that of the pooled distribution (without ac-
counting for product heterogeneity) increases with this correlation. The implied correlation and
the coefficient of variation (present in equation (27) as well) are tabulated in the remaining two
columns.

Now we present the estimation procedure to recover the flow cost function from Section 2.2.
The model in this section permits Λ to be unbounded. We take advatage of that and work with
a power hazard Λ(x) = κxν . This form of Λ gives rise to a specifica functional form of Q. We
compute the moments of Q as functions of (κ, ν) and then estimate them using the mothod of
moments.

Suppose Λ(x) = κxν . Denote ρ = 2κ/σ2. The corresponding density of price gaps has to obey
a Kolmogorov forward equation that has the form

ρxνf(x) = f ′′(x)
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Category Skewness Kurtosis Kurtosis (t = 1, 2) Implied Correlation CV (∆p̃t)

111 -0.121 1.656 1.426 0.440 1.555

(0.065) (0.071)

119 0.011 1.955 1.288 0.339 1.683

(0.050) (0.042)

1212 -0.020 2.051 1.710 0.284 1.589

(0.162) (0.186)

122 -0.025 1.677 1.189 0.390 1.398

(0.051) (0.019)

118 -0.012 2.044 1.663 0.295 1.620

(0.118) (0.150)

117 -0.004 1.989 1.422 0.303 1.577

(0.047) (0.089)

561 -0.006 1.778 1.403 0.374 1.524

(0.133) (0.066)

Table 3: Additional statistics

With X =∞, the solution is

f(x) =

x1/2K1/(ν+2)

(
2
√
ρ

ν + 2
x(ν+2)/2

)
2
∞∫
0

x1/2K1/(ν+2)

(
2
√
ρ

ν + 2
x(ν+2)/2

)
dx

The distribution of price changes is then given by

q(−x) =
κxνf(x)

Na

=

κxν+1/2K1/(ν+2)

(
2
√
ρ

ν + 2
x(ν+2)/2

)
2Na

∞∫
0

x1/2K1/(ν+2)

(
2
√
ρ

ν + 2
x(ν+2)/2

)
dx

Since V[∆p̃t] = 1, we have σ2 = Na, so

q(−x) =
κxνf(x)

Na

=

ρxν+1/2K1/(ν+2)

(
2
√
ρ

ν + 2
x(ν+2)/2

)
4
∞∫
0

x1/2K1/(ν+2)

(
2
√
ρ

ν + 2
x(ν+2)/2

)
dx

This has to be a probability distribution, so it integrates two one. We also have the moment
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Figure 7: Estimated distribution of price changes and implied cost function

Estimated q(·) and f(·), assumed Λ(·) Recovered flow cost function

condition E[(∆p̃t)
4] = Kurt(∆p̃t). Writing the two restrictions in a convenient form,

∞∫
0

(ρxν − 2)x1/2K1/(ν+2)

(
2
√
ρ

ν + 2
x(ν+2)/2

)
dx = 0

∞∫
0

(ρxν+4 − 2Kurt(∆p̃t))x
1/2K1/(ν+2)

(
2
√
ρ

ν + 2
x(ν+2)/2

)
dx = 0

From these two relations we can get (ρ̂, ν̂). After that, using σ2 = Na, we can recover κ̂:

κ̂ =
ρ̂Na

2

The system of two restrictions can be solved exactly, and the model is just identified. The
results for the category 561 (”non-durable household goods”) are presented on Figure 7. The
estimated parameters are ν̂ = 2.285 and κ̂ = 30.747, corresponding to the Kurtosis 1.64, slightly
below the quadratic case.

D Flexibility Index: scope and limitations

The impulse response function (IRF) of the aggregate price level after a shock δ can be written as

P(t, δ) = Ω(δ) +

∫ t

0

ω(s, δ) ds

where ω(s, δ) is the flow contribution to the IRF at time s > 0, and Ω(δ) is the time t = 0 jump in
the price level. By definition ∂

∂t
P(t, δ) = ω(t, δ). The flow value of the IRF of the aggregate price
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level at time t > 0 is given by

ω(t, δ) = −
∫ X

−X
xΛ(x)f(x, t)dx+Xσ2 [f ′(−X, t)− f ′(X, t)]

where f(x, t) is the distribution of the price gaps among the firms that have not adjusted prices t
units of time after the monetary shock. The first term is the change of prices across the distribution
of price gaps at time t, with f(x, t) solving the time dependent Kolmogorov Forward Equation:

∂tf(x, t) = −Λ(x)f(x, t) +
σ2

2
∂xxf(x, t) for all x ∈ [−X,X] and t ≥ 0, (74)

f(X, t) = f(−X, t) = 0 for all t > 0, and f(x, 0) = f0(x) for all x ∈ [−X,X] (75)

The initial jump is given by

Ω(δ) =

∫ −X+δ

−X
(−x+ δ) f0(x) dx

The initial distribution f0 that we consider is a uniform shift by δ of some distribution f̂ :

Assumption 2. The initial condition is f0(x) = f̂(x + δ), where f̂ i) equals zero at the
bounds, 0 = f̂(−X̄) = f̂(X̄), ii) increases close to the lower bound, 0 < f̂ ′(−X̄) < ∞, and iii) is
differentiable on (−X̄, 0).

We write f0(x) = f̂ ′(x)δ + o(δ) and consider the case of small δ. Note that the assumptions
allow f̂ to be the invariant distribution corresponding to {X,Λ, σ2}, but they do not require it. In
particular, f̂ can be any distribution that has for any strictly positive time evolved according to
equation (74) and equation (75). The Flexibility index is defined as F ≡ ∂

∂δ
ω(0, δ)|δ=0, which is

equivalent to the definition in equation (17) in Caballero and Engel (2007).

Proposition 12. Let Ω and ω be the jump and flow values of the IRF of prices at t = 0.
Let X < ∞, let Λ satisfy Assumption 1, and assume that the initial distribution f0 satisfies
Assumption 2. Then Ω(0) = Ω′(δ)|δ=0 = 0. Moreover, ∂δω(0, δ)|δ=0 =∞ and ω(0, 0) = 0. Thus, if
X <∞, the flexibility index is infinite for any Λ.

Because of this result we will move to analyze the flexibility index for models with X = ∞,
where it is finite. We will will do so for a family of hazard functions which is a slight generalization
of the one treated in Section 5.1.

D.1 Power plus family of generalized hazard functions

We consider a simple four parameter family of models where Λ(x) = Λ(0) + κxν . We label this
case as power-plus, because it adds a constant to the power case. Besides Λ(0), κ, and ν, the other
parameter of the model is σ2. We introduce the parameter η and let α be the adjusted intercept:

η =

(
2κ

σ2

) 1
ν+2

, α =
Λ(0)ην

κ
.

The quadratic case is ν = 2 and α = 0. This adjusted intercept measures the relative magnitude
of Λ(0) and the slope κ, increasing in the former and decreasing in the latter. We will show that
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for a fixed power the Kurtosis, adjustment frequency, and the flexibility index only depend on α.

Proposition 13. Fix σ2 and let Λ(x) be a power-plus hazard function parameterized by
(κ,Λ(0), ν). The adjustment frequency, the kurtosis of price changes, and the flexibility index are

Na =
η2σ2

2
Ñ(ν, α) ,

Kurt(∆p)

6Na

=
1

η2σ2
K̃(ν, α) , F =

η2σ2

2
(Ñ(ν, α)(1 + ν)− να)

where Ñ(ν, α) and K̃(ν, α) only depend on ν and α; Ñ(0, α) ≡ 1 + α, and K̃(0, α) ≡ 2/(1 + α).

With no intercept, the flexibility index and adjustment frequency are related by a simple formula
via the elasticity of the hazard:

F = Na(1 + ν)

If two models have the same (ν, α), the density of price changes in one is a rescaling of that in
the other. This implies that kurtosis (and other scale-free statistics) is the same. If η also coincides
in the two models, the distributions of price changes are identical.

The power-plus parameterization allows us to illustrate substantial disconnect between the CIR
and the flexibility index. In one example where we vary one parameter at time: in this case the
flexibility index and the cumulative IRF move in the same direction. In the second example we
change three parameters at a time and show how for the same flexibility index cumulative IRF
can vary substantially, even keeping the adjustment frequency fixed.

Proposition 14. Assume that Λ is given by a power-plus function. Fix (ν, σ2) and take two
different power plus generalized hazard functions Λ1 and Λ2. If they generate the same frequency
Na, then Kurt1(∆p) > Kurt2(∆p) if and only if F1 < F2.

This result is not surprising, since we are varying one parameter only. This comparative static
exercise is very far away from the idea of a “sufficient statistic”, where one finds a statistic that
summarizes significant outputs of a class of models. Even the simple power-plus parameterization
affords much more flexibility than varying one parameter can offer.

Now we turn to the second case, where we argue that, however intuitive this might be, relying
on the flexibility index can be quite misleading. In the right panel of Figure 5 we display several
economies with the same adjustment frequency Na, and with the same Flexibility Index F , that
feature very different cumulative response to a monetary shock. That is, we vary the parameters
in such a way that both F and Na stay constant, whileM′(0) varies substantially. This is done by
increasing the power parameter ν and finding the pairs (Λ(0), κ) that keep Na and F constant. We
solve this problem numerically and find that for the same Na and F the Kurtosis of price changes
varies by 90% when ν increases from 2 to 20, as plotted in the figure. The slope of the impulse
response at t = 0 does not capture the area under it in a reliable way.

In the left panel of Figure 5 we take two examples, one with ν = 2 and the other with ν = 10,
and display the entire output impulse response function Y (t) as a function of time t. Thus, both
IRF’s have the same frequency Na and flexibility index F . The areas under both IRF’s are clearly
different, the one for ν = 10 is at least 50% larger than the one for ν = 2, consistent with the
values displayed in the right panel of the figure. By construction the slope of Y (·) at t = 0 is the
same for both cases (i.e. for ν = 2 and ν = 10), since both IRF’s have the same Flexibility index
F . Yet, the slopes of both impulse responses starts to differ substantially even for low values of t.
Since in both cases Na = 1, the values of time in the horizontal axis can be measured in terms of
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expected adjustment time. For instance, if prices change on average three times a year, meaning
Na = 3, then t = 1 represents 4 months. The ratio of the two IRF evaluated at t = 1 is higher
than 4, namely Y10(1)/Y2(1) ≈ 4.4. This example shows that even the short run output effect can
be substantially different with the same flexibility index.

E Duration Analysis and Generalized Hazard Rate

In this section we consider the Survival and the Hazard Rate as functions of the duration of the
price spells. Duration-based functions are often used in sticky price models. It is interesting
to know whether the information encoded in them is different from that encoded in the size-
distribution of price changes used above. We establish conditions for a non-trivial equivalence
result: the distribution of durations and the variance of price changes together contain the same
information about the fundamentals of the model as the distribution of price changes and frequency
of adjustment. The distribution of spells with one statistic on the size of changes (the variance) is
as informative as the size-distribution of changes and one temporal statistic (the frequency).

Denote by S(t) the Survival function, the probability that a price spell lasts at least t units of
time. We will show that, when X = ∞, an analytical Survival Function S uniquely identifies an
analytical Generalized Hazard Rate function Λ. When X =∞, the Survival function is given by

S(t) = E
[
e−

∫ t
0 Λ(x(s))ds |x(0) = 0

]
for all t ≥ 0 (76)

where the expectation is taken with respect to the paths of the drift-less Brownian motion x with
variance per unit of time equal to σ2. The value of S(t) is the Feynman-Kac formula evaluated at
x = 0. The hazard rate h(t) = −S ′(t)/S(t) measures the probability per unit of time of a price
spell ending conditional on lasting at least t. For example, the Survival function and its associated
hazard rate for the case of a quadratic generalized hazard rate Λ(x) = Λ(0) + κx2 are:

S(t) =
e−tΛ(0)(

cosh
(
t
√

2κσ2
)) 1

2

and h(t) = Λ(0) +

√
κ
σ2

2
tanh

(
t
√

2κσ2
)

for all t ≥ 0 (77)

This was obtained by Kac in his seminal study of what we now know as the Kac formula. The
next lemma gives the main technical result to establish the link between the Survival function,
which can in principle be measured in the data, and the generalized hazard function Λ(x).

Lemma 3. Fix a value of σ2 > 0, and assume that X = ∞. Assume that S is related to Λ by
equation (76). The derivatives of the Survival function S a time t = 0 and the derivatives of Λ at
x = 0 are related by the recursively generated functions {Fn} as follows:

∂nS(t)

∂tn

∣∣∣
t=0

= Fn(0) and all n = 1, 2, . . . where Fn(·) are given by

Fn+1(x) =
σ2

2

∂2Fn(x)

∂x2
− Λ(x)Fn(x) for all x ∈ R and n = 1, 2, . . . and

F1(x) = −Λ(x) for all x ∈ R
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Lemma 3 is the base of an algorithm to compute the derivatives of S at t = 0 given Λ and the
derivatives of Λ at x = 0 given S. Using this lemma, we obtain the main result of this section:

Proposition 15. Assume that σ2 > 0, X = ∞, and Λ satisfies Assumption 1. Let S be the
Survival function of Λ, as in equation (76). If the generalized hazard function Λ is analytical, then
the Survival function S uniquely identifies Λ. Likewise, if the Survival function S is analytical,
then the generalized hazard function Λ uniquely identifies S.

As remarked before, Lemma 3 gives an algorithm to recursively compute an expansion of S
based on the derivatives of Λ, or an expansion of Λ based on the derivatives of S. An implication
of Lemma 3 and Proposition 15 is that the hazard rate and its first three derivatives at zero
duration (t = 0) are given by particularly simple expressions involving the level and first two even
derivatives of the generalized hazard function evaluated at zero price gap, i.e. x = 0:

h(0) = Λ(0) ≥ 0 ,
∂h(t)

∂t
|t=0 =

σ2

2

∂2Λ(x)

∂x2
|x=0 ,

∂2h(t)

∂t2
|t=0 =

(
σ2

2

)2
∂4Λ(x)

∂x4
|x=0 ,

and
∂3h(t)

∂t3
|t=0 =

(
σ2

2

)3
∂6Λ(x)

∂x6
|x=0 − 4

(
σ2

2

∂2Λ(x)

∂x2
|x=0

)2

These formulas give a simple connection between the local behavior of Λ around x = 0 and h around
t = 0. Note that if Λ(x) is, in addition of being symmetric and differentiable in x, increasing in
|x| around x = 0, then Λ′′(0) > 0, and hence the hazard rate as function of duration, h(t), must
be increasing in duration, at least for small durations t. Likewise, if Λ(x) were decreasing in |x|
around x = 0, then Λ′′(0) < 0 and hence h(t) must be locally decreasing in duration.

Comparing with the case of Theorem 2, in this case we use much more restrictive conditions for
Λ, and obtain a more cumbersome representation — an infinite expansion instead of a closed-form
expression involving an integral. In spite of this Theorem 2 and Proposition 15 have the same
flavor: they show that if Λ is analytical and X = ∞, then Λ can be fully identified either using
the information contained in the Survival function, i.e duration on price changes, and σ2, which
can be recovered from Na and the variance of price changes with equation (13). Of course, this
also means that the information on the survival function and the size distribution of price changes
can be used as an over-identifying test of the model.

Finally, we can also estimate C ≡ Λ(0)/Na, the fraction of price changes independent of the
state, by using duration data. Given the results above, C can be estimated as h(0)/Na. This can
be an alternative to the estimates presented in Table 1 using the size distribution of price changes.
As in Section 4, a correction of unobserved heterogeneity may be important.
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Online Appendix:
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with Generalized Hazard Functions

Fernando Alvarez, Francesco Lippi, and Aleksei Oskolkov

G Solution for the firm’s alternative setup of Section 2.2

The first order condition for choice of ` in equation (9) are:

c′− (`∗ (x)) ≤ v(x)− v(0) ≤ c′+ (`∗ (x)) for all x

where `∗ (x) denotes the optimal policy, and where c′−(·) and c′+(·) denote the right and left
derivatives of c. As in the previous case, we have that if Ψ < ∞ there is a barrier X < ∞ for
which: v(X) = v(0)+Ψ and v′(X) = 0. Finally, by the same reasons as before, we have symmetry,
i.e. v(x) = v(−x), and `∗(x) = `∗(−x). As before we can summarize the decision rule of the firm
for x ∈ (−X,X) with a generalized hazard function:

Λ (x) = `∗(x) for all x

To simplify the discussion, next we describe the case of a cost c that is continuously differentiable
and strictly convex, where we simply have:

c′ (`∗ (x)) = v(x)− v(0) and Λ(x) = (c′)
−1

(v(x)− v(0)) for all x

We note that since v(x) is strictly increasing in x for x ∈ (0, X), and c(`) is convex, then Λ(x)
must also be increasing in x for x ∈ (0, X).

Replacing `∗ into the HBJ equation we obtain:

rv(x) = min

{
Bx2 +

σ2

2
v′′(x) + `∗(x) (v(0)− v(x)) + c(`∗(x)) , r (Ψ + v(0))

}
Let us assume that the cost function c has a continuous derivative. Defining, as before U(x) =
v(x) − v(0), with u = U ′ = v′, we can differentiate the HBJ equation in x ∈ (0, X), and use the
envelope to obtain:

[r + Λ(x)]u(x) = 2Bx+
σ2

2
u′′(x) .

Using the boundaries u(0) = u(X) = 0, and the logic used in the proof of Theorem 1 it is then

straightforward to solve for Ψ =
∫ X

0
u(z)dz. The marginal cost of switching intensity is recovered

using Λ(x) = (c′)−1(U(x)). The cost function itself, just as the value function, is only detemined
up to an additive constant, which is straightforward to verify from equation (9).
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H Properties of Distribution of Menu Cost

In this appendix we note that the posited behavior of Λ in a neighbourhood of x = 0 or x = |X|
determines whether the underlying density g is bounded. It is shown in equation (2) that the
hazard function inherits the shape of the value function because of the underlying optimization:
when the firm draws a fixed cost, what matters is how the value of the draw compares to the gains
from adjustment. Taking a first order derivative of equation (2) gives

Λ′(x) = κ g(v(x)− v(0)) v′(x) (78)

A bounded density g would make Λ′(x) have zero limits at x = 0 and x = X because of the
smooth-pasting conditions on v(x) at these points. Thus, if the hazard function of the inverse
problem (the one that solves for g given Λ) is not flat at 0 or Ψ, then the density g must be
diverging. We formalize this observation next:

Corollary 5. Let ε > 0 and suppose Λ′(x) is bounded away from zero for x ∈ (0, ε). Then
g(ψ) is unbounded on any (0, ψ). Likewise, if Λ′(x) is bounded away from zero for x ∈ (X − ε,X)
then g(ψ) is unbounded on any (ψ,Ψ).27

We can also characterize the behavior of the density g around ψ = 0 for different forms of Λ
arounf x = 0. Take the limiting elasticity of the hazard

ν = lim
x↓0

xΛ′(x)

Λ(x)− Λ(0)

If Λ is symmetric and smooth, it admits a quadratic approximation close to zero, and ν = 2.
Interestingly, deviations from ν = 2 imply irregular behavior of g. Theorem 1 states that

g(x) =
Λ′(x)

κu(x)

But u(x) converges to zero as x→ 0, so the limit is tricky. To resolve the indeterminacy, notice
that u(x) goes to zero linearly, since u′′(0) = 0 (immediate from the equation (4) defining u(x)
in Lemma 1). Thus whether the limit is (i) zero, (ii) positive and finite, or (iii) infinite, depends
respectively on whether Λ′(x) goes to zero (i) faster than a linear rate (ν > 2), (ii) at a linear rate
(ν = 2), (iii) slower than a linear rate (ν < 2). We can formalize this:

Corollary 6. Suppose that Λ′(x) and g(ψ) both have (possibly infinite) right limits at zero.
Then limψ↓0 g(ψ) =∞ for ν < 2, 0 < limψ↓0 g(ψ) <∞ for ν = 2, and limψ↓0 g(ψ) = 0 for ν > 2.

This corollary states that a quadratic hazard function implies a density of ψ that is positive
and finite around ψ = 0. If the leading term in Λ(x) is higher than quadratic (ν > 2) then the
density must be zero, meaning that G is flat close to ψ = 0. A hazard function with a leading
term ν < 2 implies a distribution of ψ with density that is diverging around ψ = 0.

27Since Λ(x) is symmetric, to be smooth at zero it has to have Λ′(0) = 0. The proof is done by standard analysis.
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I Alternative Normalization

We consider an alternative normalization to one used in Proposition 2. This normalization requires
that X < ∞. For a triplet {σ2, X,Λ} we can define a new problem represented by pair {ρ, Λ̂}
where Λ̂ : (−1, 1)→ R+ and where ρ is a scalar defined as follows:

Λ̂(z) =
Λ(zX)

κ
for all z ∈ [−1, 1] and ρ =

2κX2

σ2
(79)

Note that this is the normalization used in Proposition 2 with b = 1/X. This is a slight gen-
eralization of Proposition 2, in that it allows to have some comparative static with respect to
κ.

Given the triplet {σ2, X,Λ} we can solve for f as indicated in equation (10). And given the
pair {ρ, Λ̂} we can solve for the probability density f̂ , using a change of variables:

f̂(z) ≡ f (zX)X for all z ∈ [−1, 1]

We note that f̂ satisfies the

Λ̂(z) ρ f̂(z) = f̂ ′′(z) for all z ∈ [−1, 1] and z 6∈ Z (80)

where z ∈ Z if z = x/X and x ∈ J. Moreover, the density f̂ must satisfy

f̂(1) = f̂(−1) = 0 and

∫ 1

−1

f̂(z)dz = 1

Lemma 4. Consider two triplets {σ,X,Λ} such that both generate the function Λ̂(·) and the
parameter ρ by using equation (79). The two triplets have the same Kurtosis of price changes
Kurt(∆p) and the same share of adjustment in the interior s. Furthermore,

Na =
σ2

X2
n̂(ρ)

Kurt(∆p)

6Na

=
X2

σ2

m̂(ρ)

6

s =ŝ(ρ)

where n̂(ρ), m̂(ρ) and ŝ(ρ) only depend on Λ̂(·) and ρ. Moreover, n̂(·) is increasing in ρ, m̂(·) is
decreasing in ρ, ŝ(·) is increasing in ρ, and n̂(0) = m̂(0) = ŝ(0) = 1.
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J Functional forms of 〈f (x),m(x), T (x)〉 for integer ν

The invariant density f has to be symmetric around x = 0, and has to satisfy:

Λ(x)f(x) =
σ2

2
f ′′(x) for all x ∈ [0, X] , (81)

1

2
=

∫ X

0

f(x)dx and f(X) = 0 . (82)

The contribution of an individual firm to the IRF is antisymmetric around x = 0 and satisfies the
following:

Λ(x)m(x) = −x+
σ2

2
m′′(x) for all x ∈ [0, X] , (83)

m(0) = m(X) = 0 . (84)

Fianlly, T (x) is symmetric around x = 0 and satisfies

Λ(x)T (x) = 1 +
σ2

2
T (x) for all x ∈ [0, X] ,

T (X) = 0 and T ′(0) = 0 .

The latter equality is a consequence of T (·) being continuously differentiable ay zero and antisym-
metric.

Denote y = σ2/2a. We will assume that the functions of interest are analytical, so we can write
them as:

f(x) =
∞∑
k=0

αkx
k for x ∈ [0, X]

m(x) =
∞∑
k=0

βkx
k for x ∈ [0, X]

T (x) =
∞∑
k=0

γkx
k for x ∈ [0, X]

so that, in particular, γ0 = T (0). Inserting these expressions into the equations above and using
the functional form for Λ(·), we obtain:

a
∞∑
k=0

αkx
k+ν =

σ2

2

∞∑
k=2

αkk(k − 1)xk−2 for x ∈ [0, X]

a
∞∑
k=0

βkx
k+ν =

σ2

2

∞∑
k=2

βkk(k − 1)xk−2 − x for x ∈ [0, X]

a
∞∑
k=0

γkx
k+ν =

σ2

2

∞∑
k=2

γkk(k − 1)xk−2 + 1 for x ∈ [0, X]
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Matching the coefficient of each of the powers of x we have

αk = y(k + ν + 2)(k + ν + 1)αk+ν+2 for k ≥ 0

βk = y(k + ν + 2)(k + ν + 1)βk+ν+2 for k ≥ 0

γk = y(k + ν + 2)(k + ν + 1)γk+ν+2 for k ≥ 0

The symmetry and smoothness properties also lead to

β0 = β2 = γ1 = 0 (85)

Relabelling the coefficients, we can write the sums as

f(x) = α0

(
1 +

∞∑
j=1

ξp,jy
−jxj(ν+2)

)
+ α1x

(
1 +

∞∑
j=1

ηp,jy
−jxj(ν+2)

)

m(x) = β1x

(
1 +

∞∑
j=1

ξm,jy
−jxj(ν+2)

)
+ β3x

3

(
1 +

∞∑
j=1

ηm,jy
−jxj(ν+2)

)

T (x) = γ0

(
1 +

∞∑
j=1

ξt,jy
−jxj(ν+2)

)
+ γ2x

2

(
1 +

∞∑
j=1

ηt,jy
−jxj(ν+2)

)

Here the coefficients ξ·,j and η·,j are given by

ξp,j =

j∏
i=1

1

i(ν + 2)(i(ν + 2)− 1)
ηp,j =

j∏
i=1

1

i(ν + 2)(i(ν + 2) + 1)

ξm,j =

j∏
i=1

1

i(ν + 2)(i(ν + 2) + 1)
ηm,j =

j∏
i=1

1

(i(ν + 2) + 2)(i(ν + 2) + 3)

ξt,j =

j∏
i=1

1

i(ν + 2)(i(ν + 2)− 1)
ηt,j =

j∏
i=1

1

(i(ν + 2) + 1)(i(ν + 2) + 2)

Now define the following parameter:

Z =
Xν+2

y
= 2aXνX

2

σ2
= 2κT0

It will be useful in pinning down the coefficients. Here Λ̃ is the left limit of the hazard rate when
x approaches X, and T0 is the expected time to adjustment when a = 0.

Consider first f(·). The boundary condition is

0 = f(X) = α0

(
1 +

∞∑
j=1

ξp,jy
−jXj(ν+2)

)
+ α1x

(
1 +

∞∑
j=1

ηp,jy
−jXj(ν+2)

)

= α0

(
1 +

∞∑
j=1

ξp,jZ
j

)
+ α1X

(
1 +

∞∑
j=1

ηp,jZ
j

)
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Define additionally ξ·,0 = η·,0 = 1. The condition that f(·) is a density states

1

2
=

∫ X

0

f(x)dx = α0X

(
1 +

∞∑
j=1

ξp,jZ
j

j(ν + 2) + 1

)
+ α1X

2

(
1

2
+
∞∑
j=1

ηp,jZ
j

j(ν + 2) + 2

)

= α0X
∞∑
j=0

ξp,jZ
j

j(ν + 2) + 1
+ α1X

2

∞∑
j=0

ηp,jZ
j

j(ν + 2) + 2

This leads to

α1 =
1

2X2

(∑∞
j=0 ξp,jZ

j
)

∑∞
j=0

ηp,jZ
j

j(ν + 2) + 2

(∑∞
j=0 ξp,jZ

j
)
−
∑∞

j=0

ξp,jZ
j

j(ν + 2) + 1

(∑∞
j=0 ηp,jZ

j
)

=
1

2X2
α̂1(ν, Z)

α0 = − 1

2X

(∑∞
j=0 ηp,jZ

j
)

∑∞
j=0

ηp,jZ
j

j(ν + 2) + 2

(∑∞
j=0 ξp,jZ

j
)
−
∑∞

j=0

ξp,jZ
j

j(ν + 2) + 1

(∑∞
j=0 ηp,jZ

j
)

=
1

2X
α̂0(ν, Z)

Now observe that the integral of f(x)x2 is in fact proportional to X2 for a fixed Z:∫ X

0

f(x)x2dx = α0X
3

∞∑
j=0

ξp,jZ
j

j(ν + 2) + 3
+ α1X

4

∞∑
j=0

ηp,jZ
j

j(ν + 2) + 4

=
X2

2

[
α̂0(ν, Z)

∞∑
j=0

ξp,jZ
j

j(ν + 2) + 3
+ α̂1(n, Z)

∞∑
j=0

ηp,jZ
j

j(ν + 2) + 4

]

To determine m(·) and T (·), it is useful to consider separately the cases ν ≥ 1 and ν = 0. Start
with ν ≥ 1. In this case, in addition to equation (85), we know that

3σ2β3 = 1 and σ2γ2 = −1

The boundary conditions are m(X) = T (X) = 0, so

−β1 =
X2

3σ2

(
1 +

∑∞
j=1 ηm,jZ

j

1 +
∑∞

j=1 ξm,jZ
j

)

γ0 =
X2

σ2

(
1 +

∑∞
j=1 ηt,jZ

j

1 +
∑∞

j=1 ξt,jZ
j

)
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The functional forms are then

m(x) = −xX
2

3σ2

(
1 +

∑∞
j=1 ηm,jZ

j

1 +
∑∞

j=1 ξm,jZ
j

)
∞∑
j=0

ξm,jy
−jxj(ν+2) +

x3

3σ2

∞∑
j=0

ηm,jy
−jxj(ν+2)

T (x) =
X2

σ2

(
1 +

∑∞
j=1 ηt,jZ

j

1 +
∑∞

j=1 ξt,jZ
j

)
∞∑
j=0

ξt,jy
−jxj(ν+2) − x2

σ2

∞∑
j=0

ηt,jy
−jxj(ν+2)

Observe that for T (0) we have

T (0) =
X2

σ2

(
1 +

∑∞
j=1 ηt,jZ

j

1 +
∑∞

j=1 ξt,jZ
j

)
= T0

(
1 +

∑∞
j=1 ηt,j(2κT0)j

1 +
∑∞

j=1 ξt,j(2κT0)j

)

At a = 0 or, equivalently, κ = 0, we have T (0) = T0.
Now consider the case ν = 0. Here the conditions we add to equation (85) are

aβ1 = 3σ2β3 − 1 and aγ0 = σ2γ2 + 1 (86)

Plugging them into the boundary conditions m(X) = T (X) = 0,

−β1 =
X2
∑∞

j=0 ηm,jZ
j

3σ2
∑∞

j=0 ξm,jZ
j + aX2

∑∞
j=0 ηm,jZ

j

β3 =

∑∞
j=0 ξm,jZ

j

3σ2
∑∞

j=0 ξm,jZ
j + aX2

∑∞
j=0 ηm,jZ

j

γ0 =
X2
∑∞

j=0 ηt,jZ
j

σ2
∑∞

j=0 ξt,jZ
j + aX2

∑∞
j=0 ηt,jZ

j

−γ2 =

∑∞
j=0 ξt,jZ

j

σ2
∑∞

j=0 ξt,jZ
j + aX2

∑∞
j=0 ηt,jZ

j

The functional forms in this case are

m(x) = −x
X2
(∑∞

j=0 ηm,jZ
j
)(∑∞

j=0 ξm,jy
−jxj(ν+2)

)
3σ2

∑∞
j=0 ξm,jZ

j + aX2
∑∞

j=0 ηm,jZ
j

+ x3

(∑∞
j=0 ξm,jZ

j
)(∑∞

j=0 ηm,jy
−jxj(ν+2)

)
3σ2

∑∞
j=0 ξm,jZ

j + aX2
∑∞

j=0 ηm,jZ
j

T (x) =
X2
(∑∞

j=0 ηt,jZ
j
)(∑∞

j=0 ξt,jy
−jxj(ν+2)

)
σ2
∑∞

j=0 ξt,jZ
j + aX2

∑∞
j=0 ηt,jZ

j

− x2

(∑∞
j=0 ξt,jZ

j
)(∑∞

j=0 ηt,jy
−jxj(ν+2)

)
σ2
∑∞

j=0 ξt,jZ
j + aX2

∑∞
j=0 ηt,jZ

j
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Observe that in this case for T (0) we have

T (0) =
X2

σ2

( ∑∞
j=0 ηt,jZ

j∑∞
j=0 ξt,jZ

j + aX2

σ2

∑∞
j=0 ηt,jZ

j

)

= T0

(
1 +

∑∞
j=1 ηt,j(2κT0)j

1 + κT0 +
∑∞

j=1 ξt,j(2κT0)j +
∑∞

j=1 ηt,j(2κT0)j

)

When κ = 0, we have T (0) = T0.
We know that the adjustment frequency is given by

Na =
1

T (0)

Hence, the adjustment frequency can be represented as a function of κ and T0. The same is true
for the kurtosis of price changes. From equation (17),

Kurt(∆p) =
2
[∫ X

0
x4Λ(x)f(x)dx−X4 σ2

2
f ′(X)

]
Na

1

[V ar(∆p)]2

=
2Na

[∫ X
0
x4Λ(x)f(x)dx−X4 σ2

2
f ′(X)

]
σ4

=
12Na

σ2

∫ X

0

f(x)x2dx

= 6Na
X2

σ2

∑∞
j=0

ηp,jZ
j

j(ν + 2) + 4

(∑∞
j=0 ξp,jZ

j
)
−
∑∞

j=0

ξp,jZ
j

j(ν + 2) + 3

(∑∞
j=0 ηp,jZ

j
)

∑∞
j=0

ηp,jZ
j

j(ν + 2) + 2

(∑∞
j=0 ξp,jZ

j
)
−
∑∞

j=0

ξp,jZ
j

j(ν + 2) + 1

(∑∞
j=0 ηp,jZ

j
)

= 6NaT0

∑∞
j=0 ϕK,j(2κT0)j∑∞
j=0 χK,j(2κT0)j

Here the coefficients {ϕK,j, χK,j}∞j=0 are given by

ϕK,j =

j∑
i=0

(
ξp,j−iηp,i

i(ν + 2) + 4
− ηp,j−iξp,i
i(ν + 2) + 3

)

χK,j =

j∑
i=0

(
ξp,j−iηp,i

i(ν + 2) + 2
− ηp,j−iξp,i
i(ν + 2) + 1

)
As expected, when κ = 0 we have Na = 1/T0 and

Kurt(∆p) = 1.

The coefficients {ϕN,j, χN,j} for Na are taken from the corresponding formula for T (0) in the cases
ν = 0 and ν ≥ 1. In both cases ϕN,0 = χN,0 = 1. To verify ϕK,0 = −1/12 and ψK,0 = 1/2, plug
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ξp,0 = ηp,0 = 1. For ϕK,1 and χK,1, recall that

ξp,1 =
1

(ν + 2)(ν + 1)
and ηp,1 =

1

(ν + 2)(ν + 3)

The first derivative of Kurt(∆p)/(6Na) evaluated at κ = 0 is

∂

∂κ

(
Kurt(∆p)

6Na

) ∣∣∣
κ=0

= T0
χK,0ϕK,1 − ϕK,0χK,1

χ2
K,0

= −C(6ϕK,1 − χK,1)

for some positive constant C. Plugging the terms,

ϕK,1 = − 1

12(ν + 5)(ν + 6)

χK,1 = − 1

2(ν + 3)(ν + 4)

Hence,

∂

∂κ

(
Kurt(∆p)

6Na

) ∣∣∣
κ=0

=
C

2

(
1

(ν + 5)(ν + 6)
− 1

(ν + 3)(ν + 4)

)
< 0

This proves the fact that Kurt(∆p)/(6Na) decreases for small κ.

K Special Cases of Interest

K.1 m and f in the discrete, unbounded case

We assume that we can divide [0,∞) into N segments, each one where Λ(x) is constant at the
value ρk > 0 and with thresholds {x̄k}Nk=0 as follows. The values of {x̄k} and {ρk} are given. We
let

0 = x̄0 < x̄1 < x̄2 < · · · < x̄N−1 < x̄N =∞

The function Λ(x) takes N different strictly positive values denoted by {ρk}Nk=1, so that:

Λ(x) = ρk for x ∈ [x̄k−1, x̄k) for k = 1, 2, . . . , N

0 < ρ1 < ρ2 < · · · < ρN .

Since m(·) and f(·) solve Kolmogorov equations (backward for m(·) and forward for f(·)), on each
segment they can parametrized by a pair of unknown constants:

m(x) = Mk(x) = − x

ρk
+ uke

ηkx + vke
−ηkx for x ∈ [x̄k−1, x̄k]

f(x) = P̄k(x) = pke
ηkx + qke

−ηkx for x ∈ [x̄k−1, x̄k]

ηk =

√
2ρk
σ2
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for k = 1, 2, . . . , N . We require that f(·) and m(·) be continuously differentiable on (0,∞). This
implies that

Mk(x̄k) = Mk+1(x̄k) and M ′
k(x̄k) = M ′

k+1(x̄k) for all k = 1, 2, . . . , N − 1 (87)

P̄k(x̄k) = P̄k+1(x̄k) and P̄ ′k(x̄k) = P̄ ′k+1(x̄k) for all k = 1, 2, . . . , N − 1 (88)

In addition we have the following conditions. Since m is antisymmetric around zero we require
m(0) = 0. Since f is a density, it must integrate to one, and since it symmetric it must integrate
to one half over positive x. Finally, both m and f should converge to −x/ρN and 0 as x → ∞.
These conditions are sometimes referred as no-bubble conditions. Hence:

M1(0) = 0,
1

2
=

∫ ∞
0

f(x)dx =
N∑
k=1

∫ x̄k

x̄k−1

P̄k(x)dx, and pN = uN = 0

Overall, we have 2N unknowns, namely {uk, vk}Nk=1, and 2N linear equations for m(·), namely
2(N − 1) from equation (87), that m(0) = 0, and the no-bubble condition. Likewise for f(·). We
can write these equations and solve for the constants. Once we have them we can evaluate:∫ ∞

0

x2f(x)dx =
N∑
k=1

∫ x̄k

x̄k−1

x2P̄k(x)dx and

∫ ∞
0

m(x)f(x)dx =
N∑
k=1

∫ x̄k

x̄k−1

M ′
k(x)P̄k(x)dx .

and check if:

N∑
k=1

∫ x̄k

x̄k−1

x2P̄k(x)dx = −σ2

N∑
k=1

∫ x̄k

x̄k−1

M ′
k(x)P̄k(x)dx .

Now we will determine the coefficients {pk, qk}Nk=1 and {uk, vk}Nk=1. Start with the ones for p̄(·).
Combining the continuity and differentiability conditions, we can write the coefficients recursively
for k = 1, 2...N − 1:

pk =
1

2

(
1 +

ηk+1

ηk

)
e(ηk+1−ηk)xkpk+1 +

1

2

(
1− ηk+1

ηk

)
e−(ηk+1+ηk)xkqk+1

qk =
1

2

(
1 +

ηk+1

ηk

)
e(ηk−ηk+1)xkqk+1 +

1

2

(
1− ηk+1

ηk

)
e(ηk+1+ηk)xkpk+1

We also have the terminal condition pN = 0 and the normalization (the density must integrate to
one half over positives). Observe that the coefficients are in fact linear in qN , so qN can easily be
found from the normalization. The integral is

1

2
=

∞∫
0

f(x)dx =
N−1∑
k=0

pk+1
eηk+1xk+1 − eηk+1xk

ηk+1

−
N−1∑
k=0

qk+1
e−ηk+1xk+1 − e−ηk+1xk

ηk+1

x



We can use linearity: letting pk = p̂kqN and qk = q̂kqN and plugging this into the normalization,
we can write

1

2
=

N−1∑
k=0

(
p̂k+1

eηk+1xk+1 − eηk+1xk

ηk+1

− q̂k+1
e−ηk+1xk+1 − e−ηk+1xk

ηk+1

)
qN (89)

The numbers {p̂k, q̂k}N−1
k=1 are easily obtained from {pk, qk}N−1

k=1 computed recursively for some pre-
supposed value of qN . Knowing them, we can recover the real qN from equation (89) and recompute
the real {pk, qk}N−1

k=1 .
Now we will determine the coefficients for m(·). The continuity and differentiability conditions

lead to the following recursive representation:

uk =
1

2

(
1 +

ηk+1

ηk

)
e(ηk+1−ηk)xkuk+1+

1

2

(
1− ηk+1

ηk

)
e−(ηk+1+ηk)xkvk+1

+
1

2

(
x+

1

ηk

)(
1

ρk
− 1

ρk+1

)
e−ηkxk

vk =
1

2

(
1 +

ηk+1

ηk

)
e(ηk−ηk+1)xkvk+1+

1

2

(
1− ηk+1

ηk

)
e(ηk+1+ηk)xkuk+1

+
1

2

(
x− 1

ηk

)(
1

ρk
− 1

ρk+1

)
e−ηkxk

We also have the terminal condition uN = 0 and the antisymmetry condition m(0) = 0. The
latter one reduces to u1 + v1 = 0. Now we can observe that all uk and vk are in fact affine in vN :
uk = ûkvN + ũk and vk = v̂kvN + ṽk. The condition m(0) = 0 can be written as

0 = u1 + v1 = (û1 + v̂1)vN + (ũ1 + ṽ1) (90)

The coefficients {ûk, v̂k}N−1
k=1 and {ũk, ṽk}N−1

k=1 can be found from {uk, vk}N−1
k=1 computed recursively

for two different presupposed values of vN (we need two because the functions are affine, not linear).
After that, we can recover the real vN from equation (90) and recompute the real {uk, vk}N−1

k=1 .

L Discrete Distribution of Fixed Costs

Let gi > 0 be the probability of drawing a fixed cost ψi for i = 1, . . . , n− 1, conditional of drawing
a low adjustment cost opportunity. We have 0 < ψ1 < · · · < ψn−1. A firm can always pay a fixed
cost Ψ ≡ ψn and change prices, with ψn > ψn−1. At all points x where v is twice differentiable we
have:

rv(x) =

min

{
Bx2 +

σ2

2
v′′(x) + κ

n−1∑
j=1

min {ψj + v(0)− v(x) , 0}gj , r (ψn + v(0))

}

The optimal decision rule can be described by n thresholds 0 < x̄1 < x̄2 < · · · < x̄n ≡ X. The
optimal decision rule is that conditional on drawing the adjustment cost ψj an adjustment takes
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place if |x| ≥ x̄j for j = 1, . . . , n. Note that this implies that:

v(x̄j) + ψj = v(0) for j = 1, 2, . . . , n.

To simplify the notation we let:

λj ≡ κgj for j = 1, . . . , n− 1 and Λ(x) =
n−1∑
k=1

λk 1{x≥x̄k}

To summarize the firm’s problem is defined by parameters r, B, σ2, {λj}n−1
j=1 , {ψj}nj=1. The solution

is given by a set of thresholds {x̄j}nj=1 with 0 < x̄1 < · · · < x̄n.
We can write the value function for each segment j = 1, 2, . . . , n:(

r +

j−1∑
k=1

λk

)
vj(x) = Bx2 +

σ2

2
v′′j (x) +

j−1∑
k=1

[v1(0) + ψk]λk for x ∈ (x̄j−1 , x̄j]

where for convenience we define x̄0 = 0. The value function v must be differentiable at all x ∈ R,
and twice differentiable for all x ∈ R, except x = x̄j for j = 1, . . . , n. Thus we have the boundary
conditions:

v′(0) = v′(x̄n) = 0

L.1 Value function for discrete ψ distribution

The solution of the value function v is characterized by coefficients {aj, bj, cj}nj=1, roots {ηj}nj=1

and thresholds {x̄j}nj=1. In particular, given the thresholds {x̄j}nj=1 we write a linear o.d.e. for
each segment [x̄j−1, x̄j] for j = 1, . . . , n. This o.d.e. is parametrized by three constants aj, bj, cj as
follows:

vj(x) = aj + bjx
2 + cj

(
eηjx + e−ηjx

)
for x ∈ [x̄j−1, x̄j] and j = 1, . . . , n

where ηj is given by:

ηj =

√
(r +

∑j−1
k=1 λj)

σ2/2

Replacing the non-homogenous solution aj + bjx
2 into the o.d.e. in each segment we have:(

r +

j−1∑
k=1

λk

)
(aj + bjx

2) = Bx2 +
σ2

2
2bj +

j−1∑
k=1

[v1(0) + ψk]λk for x ∈ [x̄j−1, x̄j] and j = 1, . . . , n

Matching the terms quadratic in x, and using that v1(0) = a1 + 2c1, we get:(
r +

j−1∑
k=1

λk

)
bj = B for j = 1, . . . , n (91)

Matching the constant we have:(
r +

j−1∑
k=1

λk

)
aj = σ2bj +

j−1∑
k=1

[a1 + 2c1 + ψk]λk for j = 1, . . . , n (92)
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The continuity and (once) differentiability at x = x̄j for j = 1, . . . , n− 1 gives:

aj+1 +bj+1 (x̄j)
2 +cj+1

(
eηj+1x̄j + e−ηj+1x̄j

)
= aj+bj (x̄j)

2 +cj
(
eηj x̄j + e−ηj x̄j

)
for j = 1, . . . , n−1

(93)
and

2bj+1x̄j + cj+1ηj+1

(
eηj+1x̄j − e−ηj+1x̄j

)
= 2bjx̄j + cjηj

(
eηj x̄j − e−ηj x̄j

)
for j = 1, . . . , n− 1 (94)

value matching and smooth pasting at x̄n gives:

ψn + a1 + 2c1 = an + bn (x̄n)2 + cn
(
eηnx̄n + e−ηnx̄n

)
(95)

0 = 2bnx̄n + cnηn
(
eηnx̄n − e−ηnx̄n

)
(96)

The optimal return point conditions, v′(0) = 0, is automatically satisfied by symmetry of the value
functions.

Thus we have 4×n unknowns, namely {x̄j, aj, bj, cj}nj=1, and 4×n equations, namely n equations
matching quadratic terms, i.e. equations (91), n equations matching constants, i.e. equations (92),
n−1 equations enforcing continuity, i.e. equations (93), n−1 equations enforcing differentiability,
i.e. equations (94), and two more equations on the boundary x̄n enforcing value matching, i.e.
equation (95), and smooth pasting, i.e. equation (96).

L.2 Inverse problem: recovering the cost function

We now solve an inverse problem, namely how to recover the menu cost values ψj that underlie a
given observed hazard function Λ(x) at given thresholds {x̄j}. The main result is summarized by
the next proposition:

Proposition 16. Fix a discount rate, curvature and variance r, B, σ2 > 0, and a step function
Λ giving the probability per unit of time of a price adjustment for |x| < xn. The function Λ
is described by a set of probability rates for costs {λj}n−1

j=1 ∈ Rn
+ for n ≥ 1, and a set of n

thresholds {x̄j}nj=1 with 0 = x̄0 < x̄1 < · · · < x̄n. Then there is a unique set of n fixed costs
0 = ψ0 < ψ1 < · · · < ψn so that the n thresholds {x̄j}nj=1 solve the firm’s problem defined

by r, B, σ2, {λj}n−1
j=0 , {ψj}nj=1. Moreover, the fixed costs {ψj}nj=1 and the coefficients of the value

function {aj, bj, cj}nj=1 solve a system of linear equations.

Proof. (of Proposition 16) We first solve for each of the coefficients bj using equation (91) for
each j = 1, . . . , n.

We note that the thresholds {x̄j}nj=1 are given and that roots {ηj}nj=1 can be computed as
functions of given parameters.

Using the coefficients {bj}nj=1, we solve for the coefficients {cj}nj=1. First we solve for cn enforcing
smooth pasting at x̄n given by equation (96). Using cn we recursively use cj+1 to solve for cj
imposing differentiability between adjecent segments, i.e. equations (94) for j = n−1, n−2, . . . , 1.

Next we solve for the {aj}nj=1, given {bj, cj}nj=1. First, use rv(0) = σ2

2
v′′(0) = σ2

2
(2b1 + (η1)22c1)

and v(0) = a1 + 2c1 to solve for a1, namely a1 = σ2

r
(b1 + η2

1c1)− 2c1 . Next, use equations (93) to
solve recursively for {aj}nj=2.

Finally, we solve for the fixed costs {ψj}nj=1 using value matching and the values of {aj, bj, cj}nj=1.
They give:

ψj = v(x̄j)− v(0) = aj + bj(x̄j)
2 + cj

(
eηj x̄j + e−ηj x̄j

)
− a1 − 2c1
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for j = 1, . . . , n. �
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