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A Proofs of the Theorems

Proof. (of Lemma 1). Define the function U(x) ≡ v(x)− v(0) and rewrite equation (3) as

rU(x) = Bx2 +
σ2

2
(U ′′(x)− v′′(0))− κ

∫ U(x)

0

G(ψ)dψ for x ∈ [0, X] (50)

with boundary conditions U ′(X) = 0 and U(X) = Ψ. Note that by definition U(0) = 0. To obtain
equation (50) we used integration by parts on the right hand side of equation (3):∫ U(x)

0

[ψ − U(x)]G′(ψ)dψ = G(ψ)ψ
∣∣∣U(x)

0
−
∫ U(x)

0

G(ψ)dψ − U(x)

∫ U(x)

0

G′(ψ)dψ

= G(ψ)ψ
∣∣∣U(x)

0
−
∫ U(x)

0

G(ψ)dψ − U(x) [G(U(x))−G(0)]

= −
∫ U(x)

0

G(ψ)dψ + U(x)G(0)

Next differentiate both sides of equation (50) with respect to x to obtain:

[r + κG(U(x))]U ′(x) = 2Bx+
σ2

2
U ′′′(x) for x ∈ [0, X] (51)

with boundary conditions given by: U ′(X) = 0 and U ′(0) = 0. The first boundary condition
is smooth pasting. Note that if X = ∞ we do not have smooth pasting, but since v is bounded
above so is U , then it must be that limx→∞ U

′(x) = 0, and hence the analogous boundary condition
holds in the case where X is unbounded. The second boundary is implied by the symmetry and
differentiability of v(·), and hence of U(·), around x = 0. Thus, solving for the value function in
equation (3) is equivalent to solving for U(·) in equation (51) with its corresponding boundary
conditions.

Now define u(x) ≡ U ′(x) and rewrite equation (51) using that Λ(x) = κG(U(x)), by equa-
tion (2). This gives the o.d.e. in equation (4). The boundary conditions described above in terms
of U ′ thus become u(X) = u(0) = 0.

Uniqueness and invertibility. Note that equation (4) is a linear second order ordinary differen-
tial equation of the Sturm-Liouville type with two Dirichlet boundary conditions, where we write:
L(u)(x) ≡ [r + Λ(x)]u(x)− σ2

2
u′′(x) and thus the equation above can be written as L(u)(x) = 2Bx.
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The function Λ(·) defining the operator L is continuous, so it has a unique solution u(·). To see this
let L(u)(x) = 2Bx and let {θj, ϕj} be the eigenvalues and orthonormal eigenfunctions of L satis-
fying the Dirichlet boundary conditions, i.e. solving L(ϕj) = θjϕj and with ϕj(0) = ϕj(X) = 0.
By linearity we have L(

∑
j αjϕj) =

∑
j θjαjϕj for any square integrable sequence {ϕj(·)}. Then

we can choose {αj} so that u(x) =
∑

j θjαjϕj(x), with the equality in the L2 sense. In particular
we can set αj = 〈ϕj, u〉/θj. Again, the case of X = ∞, requires a slightly different argument for
the existence of its solution. In particular, the existence of a solution is guaranteed by Theorem
3.1 in Lian, Wang, and Ge (2009). By the Maximum principle then u(x) > 0 since 2Bx > 0 in
(0, X). Since u > 0 then U is increasing and thus it is invertible.

Value function. We construct v(·) as follows. Recall u = U ′ and U(0) = 0, we have

U(x) =

∫ x

0

u(z)dz for all x ∈ [0, X] and Ψ = U(X) .

From the definition of U(x) = v(x)− v(0) and equation (3) we have

v′′(0) = U ′′(0) = u′(0) and rv(0) = v′′(0)
σ2

2
so v(0) = u′(0)

σ2

2r

which gives equation (5) in the lemma. Note that v(·) is increasing because u(x) > 0 on (0, X) as
established above. �

Proof. (of Theorem 1). We now construct the fixed cost Ψ, the Poisson arrival rate κ, the value
of G(0) and the density G′(·) that rationalize the generalized hazard rate Λ(·) using the function
u(·). We use equation (2), Λ(x) = κG(U(x)) for all x ∈ [0, X], which evaluated at x = 0 implies
Λ(0) = κG(0). Denote by w(·) ≡ U−1(·), the inverse function of U(·), mapping [0,Ψ] onto [0, X].
Set κ to be κ = Λ(X) to ensure that G(Ψ) = 1. Differentiating the expression above with respect

to x, we have G′ (U (x)))U ′(x) = Λ′(x)
Λ(X)

for all x ∈ (0, X) and thus

G′ (ψ) = G′ (U (w (ψ))) =
Λ′(w(ψ))

u(w(ψ))Λ(X)
=

Λ′(w(ψ))

u(w(ψ))Λ(X)
for all ψ ∈ (0,Ψ)

which gives the density of G′ in terms of the function u defined in Lemma 1. �

Proof. (of Theorem 2) Without loss of generality, given the assumed symmetry, let q(·) be the
density of minus price changes, so that q(x)Na = Λ(x)f(x). Denote the minus price changes by
∆p. We will use four equations for x > 0:

f ′′(x) =
2

σ2
q(x)Na

f ′(x) = f ′(X)−
∫ X

x

f ′′(t)dt

f(x) = −
∫ X

x

f ′(t)dt

σ2 = NaV ar(∆p)
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where we have used that f(X) = 0. Combining the first and the second equation we have ,

f ′(x) = f ′(X)− 2

σ2
Na

∫ X

x

q(x)dx = f ′(X)− 2

σ2
Na

(
1 + f ′(X)

σ2

2Na

−Q(x)

)
=

2

σ2
Na(Q(x)− 1)

where we have used that limQ(x)→ 1 + f ′(X) σ2

2Na
as x→ X. Integrating further,

f(x) =
2

σ2
Na

∫ ∞
x

(1−Q(t))dt

Now using the last equation,

f(x) =
2

V ar(∆p)

∫ ∞
x

(1−Q(t))dt

Using the identity q(x)Na = Λ(x)p̄(x) once again,

Λ(x) =
NaV ar(∆p)

2

q(x)∫∞
x

(1−Q(t))dt

Finally, we check whether Λ(X) = κ <∞. If X <∞, then using L’Hopital we get

Λ(X) =
NaV ar(∆p)

2

q′(X)

−f ′(X)σ
2

2

<∞

If X =∞, we apply L’Hopital rule twice, since q(x)→ 0 and Q(x)→ 1 as x→∞. We obtain:

Λ(X) =
NaV ar(∆p)

2
lim
x→∞

q′′(x)

q(x)

which is finite given our assumption on the tail of q. This completes the proof. �

Proof. (of Theorem 3). First note that the identity in equation (13), N · V ar = σ2, holds in the
model. Let x(0) = 0. Consider the process z(t) ≡ x(t)2 − σ2 t for t ≥ 0. Using Ito’s lemma we can
verify that the drift of x2 is σ2, and hence z(t) is a Martingale. Let τ be a stopping time, i.e. an
instant where a price adjustment occurs (anywhere in the state space, including the boundaries),
so that x is reset at x(0) = 0. By the optional sampling theorem z (τ), the process stopped at τ ,

is also a martingale. Then E
[
z(τ)

∣∣∣ x(0)
]

= E
[
x(τ)2

∣∣∣ x(0)
]
− σ2E

[
τ
∣∣∣ x(0)

]
= x(0) = 0. Since

N = 1/E
[
τ
∣∣∣ x(0)

]
and V ar = E

[
x(τ)2

∣∣∣ x(0)
]

we get the identity in equation (13).

For simplicity, we focus next on the case with unbounded support X̄ → ∞ (the logic for the
case with bounded support is identical but the equations are slightly more cumbersome). Using
the definition of the density of price changes in equation (15) we can rewrite the identity as∫ ∞

−∞
x2Λ(x)f(x)dx = σ2 (52)
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it is then straightforward to write the formula for kurtosis over 6Na as:

Kur

6Na

=

∫∞
−∞ x

4Λ(x)f(x)dx

6
(∫∞
−∞ x

2Λ(x)f(x)dx
)2 =

∫∞
−∞ x

4Λ(x)f(x)dx

6σ4

where the last passage uses equation (52). Using the Kolmogorov forward equation,∫ ∞
−∞

x4Λ(x)f(x)dx =
σ2

2

∫ ∞
−∞

x4f ′′(x)dx

Integrating by parts twice gives∫ ∞
−∞

x4Λ(x)f(x)dx = 6σ2

∫ ∞
−∞

x2f(x)dx

This allows us to write

Kur

6Na

=

∫∞
−∞ x

2f(x)dx

σ2
(53)

Recall that we have a system of two equations:

Λ(x)f(x) =
σ2

2
f ′′(x) , Λ(x)m(x) =

σ2

2
m′′(x)− x

Eliminate Λ to get:

σ2

2

m(x)f ′′(x)

f(x)
= −x+

σ2

2
m′′(x)

Multiply both sides by f(x)x and rearrange:

σ2

2
[m(x)f ′′(x)−m′′(x)f(x)]x = −x2f(x)

Integrate both sides from 0 to ∞:

σ2

2

∞∫
0

[m(x)f ′′(x)−m′′(x)f(x)]xdx = −
∞∫

0

x2f(x)dx

Perform integration by parts in the left-hand side using the fact that [m(x)f ′(x)−m′(x)f(x)]′ =
m(x)f ′′(x)−m′′(x)f(x):

σ2

2

∞∫
0

[m(x)f ′′(x)−m′′(x)f(x)]xdx =
σ2

2

[m(x)f ′(x)−m′(x)f(x)]x

∣∣∣∣∣
∞

0

−
∞∫

0

[m(x)f ′(x)−m′(x)f(x)]dx


=− σ2

∞∫
0

m(x)f ′(x)dx
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where the last equality uses integration by parts again. We used E[m(x)] < ∞ and m(·) being
almost linear at infinity to justify setting f ′(x)m(x)x and f(x)m′(x)x at infinity to 0. Hence, we
have

σ2

∞∫
0

m(x)f ′(x)dx =

∞∫
0

x2f(x)dx

Plugging this result in equation (53) we have

Kur

6Na

=

∫ ∞
−∞

m(x)f ′(x)dx

It follows from the definition ofM(δ) in equation (33) that the right hand side is the first derivative
of the CIR with respect to δ, evaluated at δ = 0, or M′(δ). This completes the proof. �

Proof. (of Theorem 4) The proof follows the same steps used for Theorem 1.

Proof. (of Theorem 5) The proof will proceed in three steps.
Step 1. As a first step we show how to recover the value µ and σ2 based on the distribution

of ∆p. The first moment of ∆p, together with the frequency N gives µ from E [∆p] = −µNa. To
see this, let τ the stopping time at which prices are changed, so we have ∆p = x∗ − x(τ) with
x(0) = x∗ and dx = µdt+ σdW . Let y(t) = x∗ − x(t) + µt. Note that y is a Martingale, and thus
E[y(τ)] = 0 = E[x∗ − x(τ)] + µE[τ ] or NaE[∆p] = −µ. To obtain σ2 we prove that the moment
generating function of the distribution of price changes must equal one when evaluated at 2µ/σ2,
i.e.:

M∆p

(
2µ

σ2

)
=

∫
e

2µ

σ2
∆pdQ(∆p) = 1

where M∆p(·) is the moment generating function of the distribution of prices. To see why this has
to be the case, we first define Fn as:

Fn ≡
1

Na

[∫ x

x

σ2

2
f ′′(x)(x∗ − x)ndx− σ2

2
f ′(x)(x∗ − x)n|xx

]
Using the KFE equation, we get

Fn =
1

Na

∫ x

x

[Λ(x)f(x) + µf ′(x)] (x∗ − x)ndx− σ2

2Na

f ′(x)(x∗ − x)n|xx

=

∫ x

x

(x∗ − x)nq(x∗ − x)dx− σ2

2Na

f ′(x)(x∗ − x)n|xx +
1

Na

µ

∫ x

x

f ′(x)(x∗ − x)ndx

Using the definition of q and integrating by parts:

Fn =

∫ x

x

(x∗ − x)nq(x∗ − x)dx− σ2

2Na

f ′(x)(x∗ − x)n|xx

+
2µ

σ2

1

n+ 1

1

Na

[∫ x

x

σ2

2
f ′′(x)(x∗ − x)n+1dx− σ2

2
f ′(x)(x∗ − x)n+1|xx

]
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This implies

Fn = E [∆pn] +
2µ

σ2

1

n+ 1
Fn+1

with

F1 =
1

Na

[∫ x

x

σ2

2
(x∗ − x)f ′′(x)dx− σ2

2
f ′(x)(x∗ − x)|xx

]
=

1

Na

[∫ x

x

σ2

2
f ′(x)dx+

σ2

2
(x∗ − x)f ′(x)|xx −

σ2

2
f ′(x)(x∗ − x)|xx

]
=

σ2

2Na

f(x)|xx = 0

Iterating the recursive expression for Fn with this starting condition and assuming that µ 6= 0,

0 =
2µ

σ2
F1 =

∞∑
j=1

(
2µ

σ2

)j
1

j!
E
[
(∆p)j

]
Now the moment generating function can be written as

M∆p(ϕ) ≡
∫
eϕ∆pdQ(∆p) = 1 +

∞∑
j=1

ϕj

j!

∫
(∆p)jdQ(∆p)

Hence M∆p(
2µ
σ2 ) = 1.

Step 2. As an intermediate step we develop an alternative expression for Na, which will be
used below. By a mass preservation argument in the time dependent version of the Kolmogorov
equation, continuity of f at x = x∗, and the boundary conditions at x = x and x = x,

0 =
σ2

2
[f ′(x)− f ′(x∗+) + f ′(x∗−)− f ′(x)]−

∫ x

x

Λ(x)f(x)dx

Replacing the expression for Na we obtain Na = σ2

2
[f ′(x∗−)− f ′(x∗+)].

Step 3. Now we turn to obtain the invariant distribution of of price gaps f . Using the definition
of the density of price changes into the Kolmogorov forward equation for any x ∈ (x, x)/{x∗},

f ′′(x) =
2

σ2
[f ′(x)µ+ Λ(x)f(x)] =

2µ

σ2
f ′(x) +

2Na

σ2
q(x∗ − x)

which is a non-homogenous first order ordinary differential equation with constant coefficient.
Letting a ≡ f ′(x∗+) < 0, and a ≡ f ′(x∗−) > 0, we can solve the initial value problem for f ′ using
the definition of the function R in the statement of the theorem:

f ′(x; a) = e
2µ
σ2 (x−x∗)

[
a− 2Na

σ2
R (0, x∗ − x)

]
for x ∈ (x, x∗]

f ′(x; a) = e
2µ
σ2 (x−x∗)

[
a+

2Na

σ2
R (x∗ − x, 0)

]
for x ∈ [x∗, x)
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which can be verified to solve the first order linear o.d.e. for f ′ in each of the segments. Hence,

f(x) = f(x∗) +
2Na

σ2

∫ x∗

x

e
2µ
σ2 (z−x∗)R(0, x∗ − z)dz +

aσ2

2µ

[
e

2µ
σ2 (x−x∗) − 1

]
for x ∈ (x, x∗]

f(x) = f(x∗) +
2Na

σ2

∫ x

x∗
e

2µ
σ2 (z−x∗)R(x∗ − z, 0)dz +

aσ2

2µ

[
e

2µ
σ2 (x−x∗) − 1

]
for x ∈ [x∗, x)

We now derive two equations that a and a must satisfy. Imposing f(x) = f(x) = 0 and that f
is continuous at x = x∗, we get

f(x∗) =

∫ x∗

x

f ′(x; a)dx = −2Na

σ2

∫ x∗

x

e
2µ
σ2 (x−x∗)R (0, x∗ − x) dx+

aσ2

2µ

[
1− e

2µ

σ2
(x−x∗)

]
= −

∫ x

x∗
f ′(x; a)dx = −2Na

σ2

∫ x

x∗
e

2µ
σ2 (x−x∗)R (x∗ − x, 0) dx− aσ2

2µ

[
e

2µ
σ2 (x−x∗) − 1

]
Thus, the system of two linear independent equations in a and a is:

2Na

σ2

[∫ x∗

x

e
2µ
σ2 (x−x∗)R (0, x∗ − x) dx−

∫ x

x∗
e

2µ
σ2 (x−x∗)R (x∗ − x, 0) dx

]

= a

1− e
2µ
σ2 (x−x∗)

2µ/σ2

+ a

e2µ
σ2 (x−x∗) − 1

2µ/σ2


2Na

σ2
= a− a

To arrive at the expressions in the statement of the theorem, replace 2µ/σ2 with φ and normalize
a and a by 2Na/σ

2:[∫ x∗

x

eφ(x−x∗)R (0, x∗ − x) dx−
∫ x

x∗
eφ(x−x∗)R (x∗ − x, 0) dx

]
= a

[
1− eφ(x−x∗)

φ

]
+ a

[
eφ(x−x∗) − 1

φ

]
1 = a− a

The expression for f(x∗) is now

f(x∗) = −2Na

σ2

(∫ x

x∗
eφ(x−x∗)R (x∗ − x, 0) dx− a

φ

[
eφ(x−x∗) − 1

])
The expressions for f(x) on both sides of x∗ are

f(x) = f(x∗) +
2Na

σ2

(∫ x∗

x

eφ(z−x∗)R(0, x∗ − z)dz +
a

φ

[
eφ(x−x∗) − 1

])
for x ∈ (x, x∗]

f(x) = f(x∗) +
2Na

σ2

(∫ x

x∗
eφ(z−x∗)R(x∗ − z, 0)dz +

a

φ

[
eφ(x−x∗) − 1

])
for x ∈ [x∗, x)

It is now straightforward to change the variables from x to y = x − x∗ and go from f(x) to
f̃(y + x∗) = f(x)/(2Na/σ

2). This completes the proof. �
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B Proofs of the Propositions

Proof. (of Proposition 1) The details are in Section G. The proof follows the same steps as that
of Theorem 1.

Proof. (of Proposition 2) To show this let the density of the invariant distribution be f̃(z) =
f(z/b)/b. This function solves the KFE for Λ̃ and σ̃2. This can be verified using that f solves the
KFE for Λ and σ2. Since Na = −σ2f ′(0) and Ña = −σ̃2f̃ ′(0) then it implies that Ña = Na for any
b. Also we can see that q̃(z) = q(z/b)/b, by using q(x) = Λ(x)f(x)/Na and q̃(z) = Λ̃(z)f̃(z)/Ña

for all z ∈ (−X b,X b). Using the formula for a change on variable, and the relationship between

q and q̃ and of Λ and Λ̃ we get
∫ X
−X Λ(x)f(x)dx =

∫ X̃
−X̃ Λ̃(z)f̃(z)dz, and thus s̃ = s. �

Proof. (of Proposition 3) We start by describing the o.d.e and boundary that f and fk satisfy.
For f we have:

Λ(x)f(x) =
σ2

2
f ′′(x) for all x ∈ (0, X)

f(X) = 0

1/2 =

∫ X

0

f(x)dx

For fk we have

Λ(x)fk(x) =
σ2

2
f ′′k (x) for all x ∈ (0, X)

kf(x) =
σ2

2
f ′′k (x) for all x ∈ (X,∞)

1/2 =

∫ X

0

fk(x)dx+

∫ ∞
X

fk(x)dx

and that pk has a continuous first derivative at x = X. We can then solve for fk for x > X,
obtaining fk(x) = fk(X)e−η(x−X) for all x > X, where η =

√
2k/σ. Thus, using the required

continuity we can write:

Λ(x)fk(x) =
σ2

2
f ′′k (x) for all x ∈ (0, X)

f ′k(X) = −ηfk(X)

1/2 =

∫ X

0

fk(x)dx+ fk(X)/η

Now consider the solutions of the homogenous second order o.d.e. given by σ2/2f ′′(x) = Λ(x)f(x)
for x ∈ [0, X]. Given the assumption that Λ is continuous, we know that the solution is given
by linear combinations of two linearly independent functions g1, g2 defined [0, X]. This functions
depend on the interval (0, X), the constant σ > 0 only. Thus we can write the solution of each of
the two o.d.e. above as:

fk(x) = akg1(x) + bkg2(x)

f(x) = ag1(x) + bg2(x)
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for all x ∈ [0, X]. The coefficients ak, bk, a, b can be chosen to satisfy the two boundary conditions
written for f and fk. We can use the homogeneity of the boundary conditions and preliminary set
ak = a = 1, drop the boundary conditions given by the integral equation for each system, use b̄, bk
to solve the remaining boundary conditions at X, and then find a, ak and rescale b, bk to satisfy
the two integral equations. To do so, let b̂ = b/a and b̂k = ak/bk. Thus we write the remaining
boundary conditions:

f(X) = 0 becomes 0 = g1(X) + b̂g2(X)

f ′k(X) = −ηfk(X) becomes g′1(X) + b̂kg
′
2(X) = −η

[
g1(X) + b̂kg2(X)

]
equivalently we can write:

b̂ = −g1(X)

g2(X)
and b̂k = −ηg1(X) + g′1(X)

ηg2(X) + g′2(X)

Furthermore let Ii ≡
∫ X

0
gi(x)dx for i = 1, 2 so that we can write the remaining boundary conditions

as:

1/2 = aI1 + bI2 =⇒ a =
1

2
(
I1 + I2b̂

)
1/2 = akI1 + bkI2 + ak

g1(X)

η
+ bk

g2(X)

η
=⇒ ak =

(
I1 + b̂kI2 +

g1(X)

η
+ b̂k

g2(X)

η

)
/2

Note that, given the expression for η, taking k →∞ it is equivalent to take η →∞. Then, using
L’Hopital in the second equation we obtain that b̂k → b̂, which them implies that ak → a and
finally bk → b. Now we can compare fk and f to obtain:

|fk(x)− f(x)| = |(ak − a)|g1(x) + (bk − b)g2(x)|
≤ |ak − a||g1(x)|+ |bk − b||g2(x)| for all x ∈ [0, X]

Since g1 and g2 are continuous in x, then they are bounded in [0, X]. Thus as k → ∞ we have
that fk converges uniformly to f . �

Proof. (of Proposition 4) Absolute continuity ofQ(·) follows from continuity of f(·) on (−X,X)/{0}
and boundedness of Λ(·) on (−X,X). Symmetry of q(·) follows from both f(·) and Λ(·) being
symmetric, and its continuity follows from the continuity of f(·).

That Q(·) is fully identified by all its moment requires either X < ∞ or the existence of its
moment generating function in some neighborhood of zero when X =∞. This is Theorem 2.3.11
in Casella and Berger (2002). Take the case X = ∞. We will show the existence of the moment
generating function in a neighborhood of zero, which amounts to convergence of a series

∞∑
n=0

(ia)nE[xn]

n!

for some a > 0. Due to symmetry, all odd moments are zero, so we will prove that the even
moments grow no faster than the factorial.

9



Consider an even moment E[x2k+2]:

E
[
x2k+2

]
=

∞∫
−∞

x2k+2q(x)dx =
2

Na

∞∫
0

x2k+2Λ(x)f(x)dx =
σ2

Na

∞∫
0

x2k+2f ′′(x)dx

This uses the definition of and symmetry q(·) and the KFE. Integrate the right-hand side by parts
twice:

σ2

Na

∞∫
0

x2k+2f ′′(x)dx =
σ2(2k + 2)(2k + 1)

Na

∞∫
0

x2kf(x)dx

Here we used the fact that, due to Assumption 1, Λ(·) is bounded away from zero for x > xH ,
so the decay rate of q(·) is no slower than exponential. This drives the intermediate terms from
integration by parts to zero.

Now we will prove that

∞∫
0

x2kf(x)dx ≤ ξ

∞∫
0

x2kΛ(x)f(x)dx

for some number ξ that does not depend on k. Two cases are interesting. First is when there is a
number λ1 > 0 such that Λ(x) > λ with probability one with respect to the measure defined by
f(·). In this case,

∞∫
0

x2kf(x)dx

∞∫
0

1

Λ(x)
x2kΛ(x)f(x)dx <

1

λ

∞∫
0

x2kΛ(x)f(x)dx

and we are done. Now assume, on the contrary, for any positive number λ there is a positive
measure (corresponding to f(·)) of x such that Λ(x) < λ. Recall that, by Assumption 1, there
exist xH > 0 and λ > 0 such that Λ(x) > λ for x > xH . The there exists a pair of numbers (λ2, x2)
with and two sets A1 and A2 such that A1 = {x : Λ(x) < λ2}, A2 = [x2,∞), the measures of A1

and A2 associated with f(·) are equal to F > 0, and

∫
A1

FΛ(x)−
∫

A1∪A2

Λ(x)f(x)dx

 f(x)dx = −
∫
A2

FΛ(x)−
∫

A1∪A2

Λ(x)f(x)dx

 f(x)dx (54)

To see why these sets exist, take first x2 = xH . If there is no λ2 < λ such that the measure of
{x : Λ(x) < λ2} is equal to [x2,∞), increase x2 until there is. Since X = ∞, the measure of
[x2,∞) decreases continuously as x2 increases, so for any λ1 < λ the value of x2 ≥ xH such that
the measures of A2 and A1 are equal exists.
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Now consider the difference

F

∫
A1∪A2

x2kΛ(x)f(x)dx−
∫

A1∪A2

Λ(x)f(x)dx

∫
A1∪A2

x2kf(x)dx

=

∫
A1∪A2

FΛ(x)−
∫

A1∪A2

Λ(x)f(x)dx

x2kf(x)dx

=

∫
A1

FΛ(x)−
∫

A1∪A2

Λ(x)f(x)dx

x2kf(x)dx+

∫
A2

FΛ(x)−
∫

A1∪A2

Λ(x)f(x)dx

x2kf(x)dx

Consider the last line. We know from equation (54) that the expression in brackets under the first
integral is negative, and that under the second integral is positive. This is because they are the
sum to zero, and Λ(x) is greater on A2 then on A1. We also know that x ≤ xH on A1 and x ≥ xH

on A2. Hence,

∫
A1

FΛ(x)−
∫

A1∪A2

Λ(x)f(x)dx

x2kf(x)dx+

∫
A2

FΛ(x)−
∫

A1∪A2

Λ(x)f(x)dx

x2kf(x)dx

≥
(
xH
)2k

∫
A1

FΛ(x)−
∫

A1∪A2

Λ(x)f(x)dx

 f(x)dx+

∫
A2

FΛ(x)−
∫

A1∪A2

Λ(x)f(x)dx

 f(x)dx


= 0 (55)

This insures∫
A1∪A2

x2kf(x)dx ≤ F∫
A1∪A2

Λ(x)f(x)dx

∫
A1∪A2

x2kΛ(x)f(x)dx = ξ1

∫
A1∪A2

x2kΛ(x)f(x)dx

At the same time,∫
R+/{A1∪A2}

x2kf(x)dx ≤ 1

λ2

∫
R+/{A1∪A2}

x2kΛ(x)f(x)dx = ξ2

∫
R+/{A1∪A2}

x2kΛ(x)f(x)dx

Hence,

∞∫
0

x2kf(x)dx ≤ max{ξ1, ξ2}
∞∫

0

x2kΛ(x)f(x)dx = max{ξ1, ξ2}E
[
x2k
]

Pluggin this to what was obtained before,

E
[
x2k+2

]
≤ σ2(2k + 2)(2k + 1) max{ξ1, ξ2}

Na

E
[
x2k
]

This implies that the series in question converges, and thus the moment generating function exists,
at least in the circle of the radius

√
Na/(σ2 max{ξ1, ξ2}). �
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Proof. (of Proposition 5) Under the identification assumptions,

E[(∆pit)
j(∆pis)

k]

E[(∆pit)j
′(∆pis)k

′ ]
=

E[bj+ki (∆p̃t)
j(∆p̃s)

k]

E[bj
′+k′

i (∆p̃t)j
′(∆p̃s)k

′ ]
=

E[(bi)
j+k]E[(∆p̃t)

j]E[(∆p̃s)
k]

E[(bi)j
′+k′ ]E[(∆p̃t)j

′ ]E[(∆p̃s)k
′ ]

=
E[(∆p̃t)

j]E[(∆p̃t)
k]

E[(∆p̃t)j
′ ]E[(∆p̃t)k

′ ]

The first equality uses ∆pit = bi∆p̃t. The second one uses mutual independence of bi, ∆p̃t, and
∆p̃s. The last one uses the fact that ∆p̃t and ∆p̃s are identically distributed. �

Proof. (of Proposition 6) Start with Q(x):

Q(x) = P{∆pit ≤ x} =

∞∫
0

P
{

∆p̃t ≤
x

bi

∣∣∣bi} dH(bi) =

∞∫
0

P
{

∆p̃t ≤
x

bi

}
dH(bi) (56)

The last equality uses the mutual independence of ∆p̃t and bi. Differentiate with respect to x:

q(x) = ∂xP{∆pit ≤ x} =

∞∫
0

1

bi
∂xP

{
∆p̃t ≤

x

bi

}
dH(bi)

Evaluate at x = 0:

q(0) =

∞∫
0

1

bi
q̃(0)dH(bi) = E[b−1

i ] q̃(0) (57)

Now turn to Cpooled:

Cpooled =
q(0)

2

V ar(∆pit)

E[|∆pit|]
=
q̃(0)

2

E[b−1
i ]E[b2

i ]

E[bi]

V ar(∆p̃t)

E[|∆p̃t|]
= C E[b−1

i ]E[b2
i ]

E[bi]

Hence,

C = C E[bi]

E[b−1
i ]E[b2

i ]
= Cpooled

(
1 +

Cov(b−1
i , b2

i )

E[b−1
i ]E[b2

i ]

)
< Cpooled

That the correction multiplier is smaller then one follows from the correlation between 1/bi and
b2
i being negative. Next we find the expression for the correction as a function of the moments:

E[|∆pit|]
E[|∆pit|−1]E[|∆pit|]

=
E[bi]

E[b−1
i ]E[b2

i ]

E[|∆p̃t|]
E[|∆p̃t|−1]E[|∆p̃t|2]

=
E[bi]

E[b−1
i ]E[b2

i ]

E[|∆pit|]
E[|∆pit|−1|∆pis|2]

Hence,

E[bi]

E[b−1
i ]E[b2

i ]
=

E[|∆pit|−1|∆pis|2]

E[|∆pit|−1]E[|∆pit|]

This completes the proof. �
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Proof. (of Lemma 4) Denote Sn(t) ≡ ∂n

∂tn
S(t). We will derive the following recursion:

S(n)(t) = E
[
Fn(x(t))e−

∫ t
0 Λ(x(s))ds |x(0) = 0

]
for all t ≥ 0 and all n = 1, 2, . . . (58)

for a sequence of functions Fn : R → R. For n = 1 it follows from differentiating equation (76)
with respect to t:

S(1)(t) = −E
[
Λ(x(t))e−

∫ t
0 Λ(x(s))ds |x(0) = 0

]
(59)

thus F1(x) = −Λ(x). For the induction step, assume that equation (58) hold and we will differen-
tiate it with respect to t. To do this, since Fn(x(t)) is an Ito’s process, and thus not differentiable
with respect to time, we use Ito’s lemma for the product of two Ito’s process, namely Fn(x(t))

and Z(t) ≡ e−
∫ t
0 Λ(x(s))ds, the second one being a degenerate one, since it has bounded varia-

tion. We then use that dFn(x(t)) = ∂xxFn(x(t))σ
2

2
dt + ∂xFn(x(t)σdW , since x has no drift, and

dZ(t) = −Λ(x(t))Z(t)dt. Thus,

S(n+1)(t) ≡ lim
∆↓0

S(n)(t+ ∆)− S(n)(t)

∆

= lim
∆↓0

1

∆
E [Fn(x(t+ ∆))Z(t+ ∆)− Fn(x(t))Z(t) |x(0) = 0]

= E
[(

σ2

2
∂xxFn(x(t))− Λ(x(t))Fn(x(t))

)
Z(t) |x(0) = 0

]
= E

[(
σ2

2
∂xxFn(x(t))− Λ(x(t))Fn(x(t))

)
e−

∫ t
0 Λ(x(s))ds |x(0) = 0

]
which give us a recursion for Fn:

Fn+1(x) =
σ2

2
∂xxFn(x)− Λ(x)Fn(x) for all x (60)

Finally, evaluating the nth derivatives of S at t = 0 we have:

S(n)(0) = Fn(0) and all n = 1, 2, . . . (61)

This completes the proof. �

Proof. (of Proposition 7) In the text. �

Proof. (of Proposition 8) Let the price gap distributions that correspond to Λ1 and Λ2 be f1 and
f2. Recall that for a fixed Na and σ2 we have f ′1(0) = f ′2(0) and it is sufficient to compare∫ ∞

0

f1(x)x2dx against

∫ ∞
0

f2(x)x2dx

(1) We first claim that the graph of the function f1(x)−f2(x) cannot cross the x−axis from above.
That is, there is no segment [a, b] such that f1(x)− f2(x) = 0 on this segment, f1(x)− f2(x) > 0
to the left of a, and f1(x)− f2(x) > 0 to the right of b. Note that this nests the case when a = b
and hence [a, b] is a single point. Suppose such a segment exists. Then one of the two statements
is true: either Λ1(x) ≥ Λ2(x) for all x ≤ a or Λ1(x) ≤ Λ2(x) for all x ≥ b.
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In the first case, the graph of f1(x) − f2(x) never crosses the x−axis again to the left of a. If
it does cross it at some c < a, on (c, a) we have f1(x) > f2(x) and hence Λ1(x)f1(x) > Λ2(x)f2(x),
implying f ′′1 (x) > f ′′2 (x). But this contradicts f ′1(c) − f ′2(c) ≥ 0 and f ′1(a) − f ′2(a) ≤ 0 holding
simultaneously. Hence, for all x < a we have f1(x) > f2(x), implying Λ1(x)f1(x) > Λ2(x)f2(x)
and f ′′1 (x) > f ′′2 (x) on (0, a). But since f ′1(a) ≤ f ′2(a), in this region we have f ′1(x) < f ′2(x), which
contradicts f ′1(0) = f ′2(0).

In the second case, the graph of f1(x)−f2(x) never crosses the x−axis again to the right of b. If
it does cross it at some d > b, on (b, d) we have f1(x) < f2(x) and hence Λ1(x)f1(x) < Λ2(x)f2(x),
implying f ′′1 (x) < f ′′2 (x). But this contradicts f ′1(b) − f ′2(b) ≤ 0 and f ′1(d) − f ′2(d) ≥ 0 holding
simultaneously. Hence the graph of f1(x)− f2(x) never crosses the x−axis again to the right of b,
which already rules out X1 > X2. Moreover, if X1 = X2 ≤ ∞, it must hold that f ′1(X1) ≥ f ′2(X1),
which contradicted by f ′1(x) < f ′2(x) for x > b. The latter follows from f ′1(b) − f ′2(b) ≤ 0 and
f ′′1 (x) < f ′′2 (x) for x > b.
(2) Since the graph of the function f1(x)− f2(x) cannot cross the x−axis from above, it can only
cross the x−axis from below. We know that there must be at least one crossing, because f1 and
f2 are continuous and both integrate to one. Hence, the function f1(x) − f2(x) is non-positive
until some point ang non-negative after some point until X1. Morover, there are segments of strict
positivity ang strict negativity. Hence,∫ X1

0

(f1(x)− f2(x))x2dx > 0

This completes the proof. �

Proof. (of Corollary 2) Fix X and let Λ1(x) ≡ λ1 on (0, X) correspond to the Calvo+ model. The
other hazard function, Λ2, is at least somewhere strictly increasing. We claim it cannot be that
Λ2(x) ≥ λ1 for all x. Assume toward a contradiction that this is the case.

Then it cannot be that the graph of f2(x) − f1(x) crosses the x−axis from below on (0, X).
If it does, there is a segment [a, b] such that f2(x) − f1(x) is positive to the right of b. But then
the graph of f2(x) − f1(x) never crosses the x−axis on (b,X] again, because if it did cross it at
some d > b, we would have Λ2(x)f2(x) > Λ1(x)f1(x) on (b, d), implying f ′′2 (x) > f ′′1 (x) on (b, d),
which contradicts f ′2(b) ≥ f ′1(b) and f ′2(d) ≤ f ′1(d) holding simultaneously. But we know that
f1(X) = f2(X) = 0, which yields a contradiction.

Neither can it be that the graph of f2(x)− f1(x) crosses the x−axis from above on (0, X). If it
does, there is a segment [a, b] such that f2(x)−f1(x) is positive to the left of a. But then the graph
of f2(x)−f1(x) never crosses the x−axis on [0, a) again, because if it did cross it at some c < a, we
would have Λ2(x)f2(x) > Λ1(x)f1(x) on (c, a), implying f ′′2 (x) > f ′′1 (x) on (c, a), which contradicts
f ′2(a) ≤ f ′1(a) and f ′2(c) ≥ f ′1(c) holding simultaneously. Hence, Λ2(x)f2(x) > Λ1(x)f1(x) on (c, a),
implying f ′′2 (x) > f ′′1 (x) on (c, a). But together with f ′2(a) ≤ f ′1(a) this contradicts f ′1(0) = f ′2(0).

Hence, the graph of f2(x) − f1(x) does not cross the x−axis from above or below on (0, X).
But Λ2 is not identically equal to λ1, so f2 cannot coincide with f1 everywhere. This yields the
contradiction. Now we know that Λ2(x) < λ1 for some x. Since Λ2 is non-decreasing, the conditions
of Proposition 8 are satisfy, and Λ1 generates a higher kurtosis of price changes. This completes
the proof. �

Proof. (of Corollary 3) Let X1 > X2 and let Λ1 and Λ2 be constants λ1 and λ2 on their intervals.
We claim that λ1 > λ2. Assume toward the contradiction λ1 ≤ λ2. We know that the graph of
the function f1(x)− f2(x) must cross the x−axis from below at some point, because f1(X2) > 0,
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f2(X2) = 0, and both f1 and f2 integrate to one. Hence, there is a point a such that f1(x) < f2(x)
to the left of a. Then the graph of f1(x) − f2(x) never crosses the x−axis on (0, a) again, since
if it did there would be a point c < a such that on (c, a) we have f1(x) < f2(x) and hence
Λ1(x)f1(x) < Λ2(x)f2(x), implying f ′′1 (x) < f ′′2 (x) everywhere on (c, a). The latter contradicts
f ′1(a) ≥ f ′2(a) and f ′1(c) ≤ f ′2(c) holding simultaneously.

But that the graph of f1(x) − f2(x) never crosses the x−axis on (0, a) again means that
f1(x) < f2(x) and hence Λ1(x)f1(x) < Λ2(x)f2(x), implying f ′′1 (x) < f ′′2 (x) everywhere on (0, a).
Together with f ′1(a) ≥ f ′2(a) this contradicts f ′1(0) = f ′2(0). Hence, λ1 > λ2. The pair Λ1 and Λ2

thus qualify for the Proposition 8, and Λ1 generates a higher kurtosis of price changes. Hence,
within the space of constant hazard functions with barriers higher X generate higher Kurtoses. By
Proposition 3, the kurtosis for X = ∞ is the limit of any sequence generated by constant hazard
functions with Xk →∞. Without loss of generality, the sequence can be constructed as monotone,
so the kurtosis for X = ∞ is higher then any its element. But the kurtosis for an arbitrary Λ is
majorized by that corresponding to a constant Λ̃ with the same barrier. Hence, the kurtosis for a
constant Λ and X =∞ is the highest possible one. This completes the proof. �

Proof. (of Corollary 4) If the two hazard functions have the same curvature k(x), it means that

Λ1(x) = Λ1(0) + Λ′1(0)

x∫
0

e
∫ z
0
k(w)
w

dwdz

Λ2(x) = Λ2(0) + Λ′2(0)

x∫
0

e
∫ z
0
k(w)
w

dwdz

We have C1 > C2 if and only if Λ1(0) > Λ2(0). Using the same method as in the proof of
Corollary 2, we can show that, since the frequency of adjustment is the same, there exists a
z < X such that Λ1(z) < Λ2(z). Hence, Λ′1(0) < Λ′2(0), and Λ1(x) − Λ2(x) is a decreasing
function. The graphs of Λ1(·) and Λ2(·) thus only cross once, so they qualify for Proposition 8,
and Kurt1(∆p) > Kurt2(∆p). �

Proof. (of Proposition 9) Fix ν ≥ 0. In Lemma 3, we know that s increases in ρ, so it is sufficient
to show that Kurt(∆p) also does. For this purpose, take some ρ1 = 2κ1X

2
1/σ

2
1. They generate

f1(·) with

κ1

(
x

X1

)ν
f1(x) =

σ2
1

2
f ′′1 (x)

Now we want to increase ρ1 to some ρ2 > ρ1. This can induce multiple f2(·), since the distribution
of price gaps also depends on X and σ2. But the kurtosis of price changes only depends on ρ, so it
suffices to show that one of the densities f2(·) corresponding to ρ2 generates a higher Kurt(∆p).
Let the new ρ2 and the density f2(·) be such that σ2

1 = σ2
2 and f ′1(0) = f ′2(0). To compare the

Kurtosis in this case it is enough to evaluate the sign of∫ X2

0

f2(x)x2dx−
∫ X1

0

f1(x)x2dx =

∫ X2

0

(f2(x)− f1(x))x2dx

First, from the proof of Lemma 3 we know that p̂′2(0) < p̂′1(0), which implies X2 > X1 because
f ′2(0) = f ′1(0). This, in turn, implies that f2(x) − f1(x) is positive on (a,X2) for some a < X1.
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Since f1(·) and f2(·) integrate to the same number over their supports, there must be a crossing b,
to the left of which f1(x) > f2(x). At this crossing, f ′1(b) ≥ f ′2(b). Now we will argue that there is
no other crossing c < b.

Suppose, by way of contradiction, such a crossing exists. We have f ′2(c) ≤ f ′1(c) Subtract one
Kolmogorov forward equations from the other:

xν
[
κ2

Xν
2

f2(x)− κ1

Xν
1

f1(x)

]
=
σ2

2
[f2(x)− f1(x)]′′ (62)

Now there are two options: κ2/X
ν
2 ≥ κ1/X

ν
1 or κ2/X

ν
2 < κ1/X

ν
1 . In the first case, since f ′2(c) ≤

f ′1(c) and f2(x) > f1(x) to the left of c, from equation (62) we can conclude that f ′′2 (x) > f ′′1 (x) for
x < c, and hence f ′2(x) − f ′1(x) only increases as x decreases. But this contradicts f ′1(0) = f ′2(0).
In the second case, since f ′2(c) ≤ f ′1(c) and f2(x) < f1(x) to the right of c, from equation (62) we
can conclude that f ′′2 (x) < f ′′1 (x) for x > c, and hence f ′2(x)− f ′1(x) only decreases as x decreases.
But this contradicts f ′2(b) > f ′1(b). Hence, there is no crossing to the left of b.

This means that f2(x) − f1(x) is negative on [0, b) and positive on (b,X2). Since it integrates
to zero over this whole interval, its integral with any positive increasing function (such as x2) is
positive. Hence, the kurtosis is higher for ρ2 > ρ1. �

Lemma 3. Consider two triplets {σ,X,Λ} such that both generate the function Λ̂(·) and the
parameter ρ by using equation (85). The two triplets have the same Kurtosis of price changes
Kurt(∆p) and the same share of adjustment in the interior s. Furthermore,

Na =
σ2

X2
n̂(ρ)

Kurt(∆p)

6Na

=
X2

σ2

m̂(ρ)

6

s =ŝ(ρ)

where n̂(ρ), m̂(ρ) and ŝ(ρ) only depend on Λ̂(·) and ρ. Moreover, n̂(·) is increasing in ρ, m̂(·) is
decreasing in ρ, ŝ(·) is increasing in ρ, and n̂(0) = m̂(0) = ŝ(0) = 1.

Proof. (of Lemma 3) By the definition of f̂(·), we have

f̂(z) =Xf(zX)

f̂ ′(z) =X2f ′(zX)

The function f̂(·) itself is derived from

ρΛ̂(z)f̂(z) = f̂ ′′(z) with f̂(1) = 0 and

∫ 1

0

f̂(z)dz =
1

2

Computing the Kurtosis,

Kurt(∆p) =
12Na

σ2

∫ X

0

f(x)x2dx = −12f ′(0)

∫ X

0

f(x)x2dx = −12f̂ ′(0)

∫ 1

0

f̂(z)z2dz

Since f̂(·) is completely determined by ρ and Λ̂(·), this quantity does not depend on other param-
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eters. The share of adjustment between the boundaries is

s = 1− f ′(X)

f ′(0)
= 1− f̂ ′(1)

f̂ ′(0)
(63)

It also only depends on Λ̂(·) and ρ. The frequency of price changes is given by

Na =− σ2f ′(0) = − σ
2

X2
f̂ ′(0)

From this we have n̂(ρ) = −f̂ ′(0), so n̂(ρ) only depends on Λ̂ and ρ. In the case when ρ = 0 the
Kolmogorov forward equation is solved by a linear f̂(·), and the slope is −1 from the boundary
condition and the normalization. Hence, n̂(0) = 1. Now take the other statistic:

Kurt(∆p)

6Na

=
2X2

σ2

∫ 1

0

f̂(z)z2dz =
X2

6σ2
m̂(ρ)

Here the function m̂(ρ) is twelve times the integral of f̂(z)z2 which only depends on Λ̂(·) and ρ.
In the case when ρ = 0 we have f̂(z) = 1− z for z ∈ [0, 1] and hence m̂(0) = 1.

Now fix the shape Λ̂(·). Consider two different values of ρ: ρ1 > ρ2. They generate two
distributions f̂1(·) and f̂2(·). Taking the difference between the Kolmogorov forward equations
that define them,

Λ̂(z)(ρ1f̂1(z)− ρ2f̂2(z)) = (f̂1(z)− f̂2(z))′′

It holds that f̂1(1) = f̂2(1), so there must be another point y ∈ (0, 1) where f̂1(y) = f̂2(y), because
f̂1(·) and f̂2(·) integrate to the same number. Moreover, this point must be a crossing, meaning
that f̂1(z)− f̂2(z) has different signs on to the left and to the right of it. Suppose f̂1(z)− f̂2(z) is
positive to the right of y. This means f̂ ′1(y) − f̂ ′2(y) ≥ 0. But then to the right of y it holds that
f̂ ′1(z)−f̂ ′2(z) > 0, since the left-hand side of equation (63) is positive. Hence, the difference between
f̂1(·) and f̂2(·) only increases to the right of y, and they cannot cross again at z = 1 > y. This is
a contradiction. The crossing is therefore such that f̂ ′1(y)− f̂ ′2(y) ≤ 0. But then to the left of y it
holds that f̂ ′1(z) − f̂ ′2(z) < 0, since the right-hand side of equation (63) is positive in this region.
The difference between f̂1(z) and f̂2(z) increases as z decreases, as does he difference between
f̂ ′1(z) and f̂ ′2(z). Hence, the crossing is unique and f̂ ′1(0) < f̂ ′2(0). Moreover, f̂1(z)− f̂2(z) > 0 for
z ∈ [0, y) and f̂1(z)− f̂2(z) < 0 for z ∈ (y, 1). From the latter fact together with f̂1(1) = f̂2(1) it
follows that f̂ ′1(1) > f̂ ′2(1). To summarize:

• there is a unique y ∈ (0, 1) such that f̂1(z) − f̂2(z) > 0 for z ∈ [0, y) and f̂1(z) − f̂2(z) < 0
for z ∈ (y, 1);

• f̂ ′1(0) < f̂ ′2(0)

• f̂ ′1(1) > f̂ ′2(1)

From the first bulletpoint it follows that m̂(·) decreases in ρ. This is because f̂1(·)− f̂2(·) integrates
to zero over (0, 1). Since it is positive until some z and negative afterwards, its integral with
increasing positive functions (such as z2) is always negative. From the second bulletpoint it follows
that n̂(·) increases in ρ, because n̂(ρi) = −f̂ ′i(0). From the second and the third bulletpoints
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combined it follows that s increases in ρ, because f̂ ′(1) and f̂ ′(0) are both negative, so their ratio
decreases with ρ. This completes the proof. �

Proof. (of Proposition 10) First, observe that if v(x;µ) and {x(µ), x∗(µ), x(µ)} represent a solution
to the firm’s problem with drift µ, then x(µ) = −x(−µ), x∗(µ) = −x∗(−µ), x(µ) = −x(−µ), and
v(x;µ) = v(−x;−µ). This can be verified directly by plugging. Hence, Λ(x;µ) = Λ(−x;−µ),
because Λ(x;µ) = κG(v(x;µ)− v(x∗(µ);µ)).

Second, observe that if f(x;µ) solves the Kolmogorov forward equation for µ and Λ(x;µ)
then f(x;µ) = f(−x;−µ). This can again be verified directly by plugging and using Λ(x;µ) =
Λ(−x;−µ). An implication of this symmetry is that f ′(x;µ) = −f ′(−x;−µ). Hence, for the
adjustment frequency we can write

Na(µ) =

x(µ)∫
x(µ)

Λ(x;µ)f(x;µ)dx+
σ2

2
f ′(x(µ);µ)− σ2

2
f ′(x(µ);µ) (64)

=

−x(−µ)∫
−x(−µ)

Λ(−x;−µ)f(−x;−µ)dx− σ2

2
f ′(−x(µ);−µ) +

σ2

2
f ′(−x(µ);−µ) (65)

=

x(−µ)∫
x(−µ)

Λ(x;−µ)f(x;−µ)dx+
σ2

2
f ′(x(−µ);−µ)− σ2

2
f ′(x(−µ);−µ) = Na(−µ) (66)

In a similar vein, using q(x) = Λ(x)f(x)/Na and hence q(x;µ) = q(−x;−µ), we can write for any
even moment of Q(·)

E
[
∆p2k

]
(µ) =

x(µ)∫
x(µ)

x2kq(x;µ)dx =

−x(−µ)∫
−x(−µ)

x2kq(−x;−µ)dx =

x(−µ)∫
x(−µ)

x2kq(x;−µ)dx = E
[
∆p2k

]
(−µ)

This holds for the fourth moment and variance, so it holds for Kurtosis as well. Hence, both
Kurt(∆p) and Na are symmetric in µ. They are also analytical functions of µ and can be written
as

Kurt(∆p) =
∞∑
i=0

aiµ
i (67)

Na =
∞∑
i=0

biµ
i (68)

The odd terms in these infinite sums must be zero, meaning

Kurt(∆p) = a0 + o(µ2) (69)

Na = b0 + o(µ2) (70)

This completes the proof. �
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Proof. (of Proposition 11) The proof is in the statement of the proposition.

Proof. (of Proposition 12) Differentiating Ω

Ω′(δ) = X f(−X + δ) +

∫ −X+δ

−X
f(x) dx

taking δ → 0, since the invariant distribution satisfies f(−X) = 0, we have Ω′(0) = 0.
Now we seek to characterize limt↓0 ωδ(t; δ). We will show that limt↓0 ωδ(t; 0) =∞ if X <∞.
For this case we replace the initial condition by f(x+δ) by f(x)+f ′(x)δ where f is the density

of the invariant distribution. We can ommitt the contribution from the term f(x), since it is equal
to zero by virtue of being the invariant distribution.

The KFE gives the following properties:

1. For all t > 0, since −X is an exit point, f(−X, t) = 0.

2. For all t > 0, there exists x(t) > −X, so that f(x, t) < f(x, 0) = f ′(x)δ > 0 for all
x ∈ [−X, x(t)]. This follows because f(x, t) is differentiable in x and f(−X, t) = 0.

3. For all x ∈ (−X, 0) we have: f(x, t) → f(x, 0) as t ↓ 0. This follows since f(x, t) is
differentiable in time t for all x.

From these properties we obtain that f ′(−X, t)→∞ as t ↓ 0. Hence, ωδ(0, 0) =∞. �

Proof. (of Proposition 13) The frequency of adjustment is given by

Na =

∫ ∞
−∞

f(x)(Λ(0) + κxν)dx =

∫ ∞
−∞

f̃(z)

(
Λ(0) + κ

(
z

η

)ν)
dz

=
κ

ην

∫ ∞
−∞

p(z)(α + zν)dz =
κ

ην
Ñ(ν, α) =

β2η2

2
Ñ(ν, α)

The flexibility index is

F = −
∫ ∞
−∞

x(Λ(0) + κxν)f ′(x)dx = −
∫ ∞
−∞

z

(
Λ(0) + κ

(
z

η

)ν)
p′(z)dz

= − κ

ην

∫ ∞
−∞

z(α + zν)f̃ ′(z)dz =
κ

ην

(∫ ∞
−∞

f̃(z)(α + zν)dz + ν

∫ ∞
−∞

p(z)zνdz

)
=

κ

ην

(
Ñ(ν, α)(1 + ν)− να

)
=
β2η2

2

(
Ñ(ν, α)(1 + ν)− να

)
The distribution of price changes is given by

q(x) =
f(x)(Λ(0) + κxν)

Na

=
η(̃ηx)(α + (ηx)ν)

Ñ(ν, α)
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To compute the kurtosis, we need the fourth moment and the variance:

E[∆p4] =

∫ ∞
−∞

x4q(x)dx =
1

η4N(ν, α)

∫ ∞
−∞

z4p(z)(α + zν)dz

E[∆p2] =

∫ ∞
−∞

x2q(x)dx =
1

η2N(ν, α)

∫ ∞
−∞

z2p(z)(α + zν)dz

These expressions imply that E[∆p4]/E[∆p2]2 only depends on (ν, α). �

Proof. (of Proposition 14) Let f1(x) and f2(x) be the price gap distributions generated by Λ1(x)
and Λ2(x). Assume without loss that κ1 < κ2. We will first prove that Λ1(0) > Λ2(0) whenever Na

is the same in the two models. That Kurt1(∆p) > Kurt2(∆p) will then follow from Proposition 8.
Finally, we will show that F1 < F2.
(1) Suppose by contradiction that Λ1(0) ≤ Λ2(0). Then, Λ1(x) < Λ2(x) for all x > 0. Since Na

and σ2 are the same in the two models, we know that f ′1(0) = f ′2(0).
Suppose there is a point a > 0 at which the graph of f1(x) crosses that of f2(x) from below.

That is, f1(a) = f2(a) and f1(x) < f2(x) to the left of a. Then the graphs of f1(x) and f2(x) never
cross again to the left of a. If they did cross at some point b < a, we would have f ′1(a) ≥ f ′2(a)
and f ′1(b) ≤ f ′2(b), so that f ′1(a)− f ′1(b) ≥ f ′2(a)− f ′2(b), but this is impossible, since f1(x) < f2(x)
and Λ1(x) < Λ2(x) on (a, b), while σ2f ′′i (x)/2 = Λi(x)fi(x) for i ∈ {1, 2}. Hence, f1(x) < f2(x) for
all x < a, which contradicts f ′1(0) = f ′2(0) for the same reason.

Suppose there is a point c > 0 at which the graph of f1(x) crosses that of f2(x) from above.
That is, f1(c) = f2(c) and f1(x) < f2(x) to the right of c. Then the graphs of f1(x) and f2(x) never
cross again to the right of c. If they did cross at some point d > c, we would have f ′1(d) ≥ f ′2(d)
and f ′1(c) ≤ f ′2(c), so that f ′1(d)− f ′1(c) ≥ f ′2(d)− f ′2(c), but this is impossible, since f1(x) < f2(x)
and Λ1(x) < Λ2(x) on (c, d), while σ2f ′′i (x)/2 = Λi(x)fi(x) for i ∈ {1, 2}. Hence, f1(x) < f2(x) for
all x > c, which contradicts f ′1(x)− f ′2(x) −→ 0 as x −→∞ for the same reason.

By what was said above, the graphs of f1(x) and f2(x) cannot cross, but they must, since these
functions integrate to the same number and have the same limit at infinity. Hence, Λ1(0) ≤ Λ2(0)
is impossible when σ2 and Na are the same in the two models.
(2) Now since κ1 < κ2 and Λ1(0) > Λ2(0), the two generalized hazard functions Λ1(x) and Λ2(x)
satisfy the conditions of Proposition 8. From this it follows that Kurt1(∆p) > Kurt2(∆p).
(3) The flexibility index for the power-plus case is given by

F =

∫ ∞
−∞

f(x)(Λ(x) + Λ′(x)x)dx = (1 + ν)Na − νΛ(0)

Since the two models deliver the same Na and ν is fixed, the one with a greater intercept has a
smaller F . This completes the proof. �

Proof. (of Proposition 15). We will make two observations, one about Λ and one about Fn
required to establish the two main results of the proposition. Then we will use Lemma 4 finish the
proof.

The first observation is that the symmetry of Λ around x = 0 implies that all the odd numbered
derivatives evaluated at x = 0 of Λ are equal to zero.

The second observation is a property of the function Fn(x) generated by the recursion in
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equation (60), which can be written as:

Fn(x) = F̃n(x)−
(
σ2

2

)n−1
∂2n−2Λ(x)

∂x2n−2

where F̃n(·) depends only on the level of Λ(·) and at most the first 2n − 1 derivatives of Λ(·),
evaluated at x. This property can be established by induction. It is true for F1(x) = −Λ(x) for
n = 1. Now assume it holds for n, and we will show that it holds n + 1. To do so we compute
Fn+1 according to the recursion. On this computation, the first term is the product of σ2/2
times the sum of the second derivative of F̃n(x) with respect to x and of the second derivative of
− (σ2/2)

n−1
∂2n−2Λ(x)/∂x2n−2 with respect to x. The remaining term, −Λ(x)Fn(x), involves no

derivatives. This finishes the induction step, and thus established the desired result for Fn.

1. If we know the function Λ(x), then we can recursively compute Fn(x) from equation (60).
Evaluating this expressions at x = 0 and using equation (61) we obtain all the derivatives
of S evaluated at t = 0. In particular, these expressions only use the level and the even
derivatives of Λ evaluated at x = 0.If S is analytical, the expansion of S at t = 0 gives the
values everywhere.

2. If we know the function S, we can take all its derivatives at t = 0, and by equation (61) we
know all the values of Fn(0) for n ≥ 1. Next we argue that the recursion in equation (60)
evaluated at x = 0, will give us all the even order derivatives of Λ evaluated at x = 0. Since
Λ is symmetric, all the derivatives of odd order, evaluated at x = 0, so we are only interested
in the even derivatives at x = 0. Next we argue that, algorithmically, we can recursively
recover the derivatives up to order 2n − 2 with {Fn(0)}forj = 1, . . . , 2n − 2. First we note
that Λ(0) and Λ′′(0) are given by F1(0) and F2(0). Now assume we know all the derivatives
up to order 2n − 2. Then, given the value of ∂n+1S(0)/∂tn+1 = Fn+1(0), the known values
for Λ(0), Fn(0), and σ2/, using the recursion we obtain the implied value for ∂xxFn(0). Using
that Fn depend at most on 2n−2 derivatives of Λ, as well as the particular expression derived
above, we obtain the value of ∂2nΛ(0)/∂t2n. This completes the induction step, and hence
establishes the desired property, and hence the level and all the derivatives of Λ at x = −0
have been recovered. Finally, since Λ is assumed to be analytical, an expansion around x = 0
gives its value at any other x.

This completes the proof. �

C Estimation and measurement issues

In this appendix we present our estimation algorithm and some additional results. The next
proposition shows that if we have a sample with mixed N different type of products all with the
same kurtosis but with different variance, then the kurtosis of the price changes of such a mixture
is higher than the kurtosis for each of them.

Proposition 11. Assume that ∆p is a mixture of N distributions, with weights {ωj}Nj=1.
Assume that for each distribution j, price changes have the same kurtosis K, but they may have
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different variance Vj. Then

Kurt(∆p) =

∑
j ωjK V 2

j[∑
j ωjVj

]2 = K

∑
j ωjV

2
j[∑

j ωjVj

]2 = K

∑
j J(Vj)ωj

J
(∑

j Vjωj

) ≥ K

with strict inequality if the distribution of {Vj}Nj=1 is not degenerate, since J(V ) = V 2 is a strictly
convex function.

The proof is contained in the statement of the proposition. Next, we plot the symmetrized
histograms with fitted densities for two data cleaning procedures: the one that eliminates price
changes smaller then 2 cents in absolute value, and the one eliminating those smaller than 1 cent
in absolute value. The distributions are very close, with immaterial differences in the bars around
zero.

Figure 6: Distribution of price changes in a narrow category

Smaller then 1 cent removed Smaller then 2 cents removed

Pooling all products for category 561 “Non-durable household goods”

We use the method of moments to estimate the mixture of two Gamma distributions with the
parameters ω (the weight), (α1, β1) and (α2, β2). The moments of |∆p̃t| we use are denoted by γj,k:

γj,k =
E[|∆p̃t|j+k]

E[|∆p̃t|j]E[|∆p̃t|k

For a mixture of two Gamma distributions with the weight ξ on the first one,

γj,k =

[
βj+k2 ω

Γ(α1 + j + k)

Γ(α1)
+ βj+k1 (1− ω)

Γ(α2 + j + k)

Γ(α2)

]
[
βj2ω

Γ(α1 + j)

Γ(α1)
+ βj1(1− ω)

Γ(α2 + j)

Γ(α2)

] [
βk2ω

Γ(α1 + k)

Γ(α1)
+ βk1 (1− ω)

Γ(α2 + k)

Γ(α2)

] (71)

Using these moments allows us to recover ω, α1, α2, and the ratio β1/β2. The exact values of β1 and
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β2 are pinned down by the normalization E[|∆p̃t|] = 1. To estimate γj,k, we rely on Proposition 5:

E[|∆p̃t|j+k]
E[|∆p̃t|j]E[|∆p̃t|k

=
E[|∆pit|j+k]

E[|∆pit|j|∆pis|k]

For all seven product categories, we get four moments (γ̂1,1, γ̂2,1, γ̂3,1, and γ̂3,2) from the data and
solve the system of four analogs of equation (71). We minimize the sum of deivations squared with
equal weights. The results are presented in Table 2.

Category γ̂11 γ̂21 γ̂31 γ̂32 α̂1 α̂2 β̂1/β̂2 ω̂ α̂22

111 1.248 1.406 1.507 1.787 2.099 12.190 228.677 0.161 4.248

119 1.282 1.507 1.702 2.381 1.058 6.012 91.439 0.109 3.747

1212 1.242 1.476 1.786 2.9230 0.599 3.873 73.414 0.000 4.151

122 1.243 1.397 1.508 1.903 1.848 9.779 173.048 0.131 4.460

118 1.289 1.539 1.777 2.552 3.123 9.836 0.628 0.580 3.610

117 1.281 1.511 1.721 2.484 0.967 5.442 84.154 0.089 3.801

561 1.216 1.394 1.586 2.271 0.998 5.783 103.470 0.031 4.782

Table 2: Moments taken from the data and the estimated parameters

Specializing to the case with a single Gamma distribution ω = 1 allows us to recover the
expressions for α in closed form. Consider γj,1 for some j:

γj,1 =
Γ(α + j + 1)Γ(α)

Γ(α + j)Γ(α + 1)
= 1 +

j

α

Hence,

α =
j

γj,1 − 1
(72)

Since we attach particula importance to the kurtosis, we would also like to use γ2,2:

γj,2 =
Γ(α + j + 2)Γ(α)

Γ(α + j)Γ(α + 2)
=

(α + j + 1)(α + j)

(α + 1)α
=

(
1 +

j + 1

α

)
γj,1
γ1,1

This leads to

α =
(j + 1)γj,2
γj,2γ1,1 − γj,1

(73)

Notice that β, the scale of the distribution, drops out from these expressions, because γj,k are
dimensionless moments. We use a linear combinations of expressions in equation (72) and equa-
tion (73) with γ̂j,1 for j ∈ {1, 2} and γ̂22 as estimators of α. Consistency requires the weights of
the combinations to sum to one, and we make them inversely proportional to the bootstrapped
variance of the estimators of summands. The estimates are presented in the last column of Table 2:
the estimate α̂22 is constructed from γ̂11, γ̂21, and γ̂22.

In Table 3 we present some additional statistics. First, we tabulate skewness of the distribution
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of price changes to show that the distributions are close to symmetric. Then, we contrast the esti-
mates of the Kurtosis with the full sample and with the first two price changes only. The difference
between them is suggestive of a strong correlation between consecutive price changes (squared),
and of a weaker correlation between distant price changes. As can be seen from equation (27),
how much the underlying Kurtosis is different from that of the pooled distribution (without ac-
counting for product heterogeneity) increases with this correlation. The implied correlation and
the coefficient of variation (present in equation (27) as well) are tabulated in the remaining two
columns.

Category Skewness Kurtosis Kurtosis (t = 1, 2) Implied Correlation CV (∆p̃t)

111 -0.121 1.656 1.426 0.440 1.555

(0.065) (0.071)

119 0.011 1.955 1.288 0.339 1.683

(0.050) (0.042)

1212 -0.020 2.051 1.710 0.284 1.589

(0.162) (0.186)

122 -0.025 1.677 1.189 0.390 1.398

(0.051) (0.019)

118 -0.012 2.044 1.663 0.295 1.620

(0.118) (0.150)

117 -0.004 1.989 1.422 0.303 1.577

(0.047) (0.089)

561 -0.006 1.778 1.403 0.374 1.524

(0.133) (0.066)

Table 3: Additional statistics

Now we present the estimation procedure to recover the flow cost function from Section 2.2.
The model in this section permits Λ to be unbounded. We take advatage of that and work with
a power hazard Λ(x) = κxν . This form of Λ gives rise to a specifica functional form of Q. We
compute the moments of Q as functions of (κ, ν) and then estimate them using the mothod of
moments.

Suppose Λ(x) = κxν . Denote ρ = 2κ/σ2. The corresponding density of price gaps has to obey
a Kolmogorov forward equation that has the form

ρxνf(x) = f ′′(x)

With X =∞, the solution is

f(x) =

x1/2K1/(ν+2)

(
2
√
ρ

ν + 2
x(ν+2)/2

)
2
∞∫
0

x1/2K1/(ν+2)

(
2
√
ρ

ν + 2
x(ν+2)/2

)
dx
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The distribution of price changes is then given by

q(−x) =
κxνf(x)

Na

=

κxν+1/2K1/(ν+2)

(
2
√
ρ

ν + 2
x(ν+2)/2

)
2Na

∞∫
0

x1/2K1/(ν+2)

(
2
√
ρ

ν + 2
x(ν+2)/2

)
dx

Since V[∆p̃t] = 1, we have σ2 = Na, so

q(−x) =
κxνf(x)

Na

=

ρxν+1/2K1/(ν+2)

(
2
√
ρ

ν + 2
x(ν+2)/2

)
4
∞∫
0

x1/2K1/(ν+2)

(
2
√
ρ

ν + 2
x(ν+2)/2

)
dx

This has to be a probability distribution, so it integrates two one. We also have the moment
condition E[(∆p̃t)

4] = Kurt(∆p̃t). Writing the two restrictions in a convenient form,

∞∫
0

(ρxν − 2)x1/2K1/(ν+2)

(
2
√
ρ

ν + 2
x(ν+2)/2

)
dx = 0

∞∫
0

(ρxν+4 − 2Kurt(∆p̃t))x
1/2K1/(ν+2)

(
2
√
ρ

ν + 2
x(ν+2)/2

)
dx = 0

From these two relations we can get (ρ̂, ν̂). After that, using σ2 = Na, we can recover κ̂:

κ̂ =
ρ̂Na

2

The system of two restrictions can be solved exactly, and the model is just identified. The
results for the category 561 (”non-durable household goods”) are presented on Figure 7. The
estimated parameters are ν̂ = 2.285 and κ̂ = 30.747, corresponding to the Kurtosis 1.64, slightly
below the quadratic case.

D Flexibility Index: scope and limitations

The impulse response function (IRF) of the aggregate price level after a shock δ can be written as

P(t, δ) = Ω(δ) +

∫ t

0

ω(s, δ) ds

where ω(s, δ) is the flow contribution to the IRF at time s > 0, and Ω(δ) is the time t = 0 jump in
the price level. By definition ∂

∂t
P(t, δ) = ω(t, δ). The flow value of the IRF of the aggregate price

level at time t > 0 is given by

ω(t, δ) = −
∫ X

−X
xΛ(x)f(x, t)dx+Xσ2 [f ′(−X, t)− f ′(X, t)]

25



Figure 7: Estimated distribution of price changes and implied cost function

Estimated q(·) and f(·), assumed Λ(·) Recovered flow cost function

where f(x, t) is the distribution of the price gaps among the firms that have not adjusted prices t
units of time after the monetary shock. The first term is the change of prices across the distribution
of price gaps at time t, with f(x, t) solving the time dependent Kolmogorov Forward Equation:

∂tf(x, t) = −Λ(x)f(x, t) +
σ2

2
∂xxf(x, t) for all x ∈ [−X,X] and t ≥ 0, (74)

f(X, t) = f(−X, t) = 0 for all t > 0, and f(x, 0) = f0(x) for all x ∈ [−X,X] (75)

The initial jump is given by

Ω(δ) =

∫ −X+δ

−X
(−x+ δ) f0(x) dx

The initial distribution f0 that we consider is a uniform shift by δ of some distribution f̂ :

Assumption 2. The initial condition is f0(x) = f̂(x + δ), where f̂ i) equals zero at the
bounds, 0 = f̂(−X̄) = f̂(X̄), ii) increases close to the lower bound, 0 < f̂ ′(−X̄) < ∞, and iii) is
differentiable on (−X̄, 0).

We write f0(x) = f̂ ′(x)δ + o(δ) and consider the case of small δ. Note that the assumptions
allow f̂ to be the invariant distribution corresponding to {X,Λ, σ2}, but they do not require it. In
particular, f̂ can be any distribution that has for any strictly positive time evolved according to
equation (74) and equation (75). The Flexibility index is defined as F ≡ ∂

∂δ
ω(0, δ)|δ=0, which is

equivalent to the definition in equation (17) in Caballero and Engel (2007).

Proposition 12. Let Ω and ω be the jump and flow values of the IRF of prices at t = 0.
Let X < ∞, let Λ satisfy Assumption 1, and assume that the initial distribution f0 satisfies
Assumption 2. Then Ω(0) = Ω′(δ)|δ=0 = 0. Moreover, ∂δω(0, δ)|δ=0 =∞ and ω(0, 0) = 0. Thus, if
X <∞, the flexibility index is infinite for any Λ.

Because of this result we will move to analyze the flexibility index for models with X = ∞,
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where it is finite. We will will do so for a family of hazard functions which is a slight generalization
of the one treated in Section 5.1.

D.1 Power plus family of generalized hazard functions

We consider a simple four parameter family of models where Λ(x) = Λ(0) + κxν . We label this
case as power-plus, because it adds a constant to the power case. Besides Λ(0), κ, and ν, the other
parameter of the model is σ2. We introduce the parameter η and let α be the adjusted intercept:

η =

(
2κ

σ2

) 1
ν+2

, α =
Λ(0)ην

κ
.

The quadratic case is ν = 2 and α = 0. This adjusted intercept measures the relative magnitude
of Λ(0) and the slope κ, increasing in the former and decreasing in the latter. We will show that
for a fixed power the Kurtosis, adjustment frequency, and the flexibility index only depend on α.

Proposition 13. Fix σ2 and let Λ(x) be a power-plus hazard function parameterized by
(κ,Λ(0), ν). The adjustment frequency, the kurtosis of price changes, and the flexibility index are

Na =
η2σ2

2
Ñ(ν, α) ,

Kurt(∆p)

6Na

=
1

η2σ2
K̃(ν, α) , F =

η2σ2

2
(Ñ(ν, α)(1 + ν)− να)

where Ñ(ν, α) and K̃(ν, α) only depend on ν and α; Ñ(0, α) ≡ 1 + α, and K̃(0, α) ≡ 2/(1 + α).

With no intercept, the flexibility index and adjustment frequency are related by a simple formula
via the elasticity of the hazard:

F = Na(1 + ν)

If two models have the same (ν, α), the density of price changes in one is a rescaling of that in
the other. This implies that kurtosis (and other scale-free statistics) is the same. If η also coincides
in the two models, the distributions of price changes are identical.

The power-plus parameterization allows us to illustrate substantial disconnect between the CIR
and the flexibility index. In one example where we vary one parameter at time: in this case the
flexibility index and the cumulative IRF move in the same direction. In the second example we
change three parameters at a time and show how for the same flexibility index cumulative IRF
can vary substantially, even keeping the adjustment frequency fixed.

Proposition 14. Assume that Λ is given by a power-plus function. Fix (ν, σ2) and take two
different power plus generalized hazard functions Λ1 and Λ2. If they generate the same frequency
Na, then Kurt1(∆p) > Kurt2(∆p) if and only if F1 < F2.

This result is not surprising, since we are varying one parameter only. This comparative static
exercise is very far away from the idea of a “sufficient statistic”, where one finds a statistic that
summarizes significant outputs of a class of models. Even the simple power-plus parameterization
affords much more flexibility than varying one parameter can offer.

Now we turn to the second case, where we argue that, however intuitive this might be, relying
on the flexibility index can be quite misleading. In the right panel of Figure 5 we display several
economies with the same adjustment frequency Na, and with the same Flexibility Index F , that
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feature very different cumulative response to a monetary shock. That is, we vary the parameters
in such a way that both F and Na stay constant, whileM′(0) varies substantially. This is done by
increasing the power parameter ν and finding the pairs (Λ(0), κ) that keep Na and F constant. We
solve this problem numerically and find that for the same Na and F the Kurtosis of price changes
varies by 90% when ν increases from 2 to 20, as plotted in the figure. The slope of the impulse
response at t = 0 does not capture the area under it in a reliable way.

In the left panel of Figure 5 we take two examples, one with ν = 2 and the other with ν = 10,
and display the entire output impulse response function Y (t) as a function of time t. Thus, both
IRF’s have the same frequency Na and flexibility index F . The areas under both IRF’s are clearly
different, the one for ν = 10 is at least 50% larger than the one for ν = 2, consistent with the
values displayed in the right panel of the figure. By construction the slope of Y (·) at t = 0 is the
same for both cases (i.e. for ν = 2 and ν = 10), since both IRF’s have the same Flexibility index
F . Yet, the slopes of both impulse responses starts to differ substantially even for low values of t.
Since in both cases Na = 1, the values of time in the horizontal axis can be measured in terms of
expected adjustment time. For instance, if prices change on average three times a year, meaning
Na = 3, then t = 1 represents 4 months. The ratio of the two IRF evaluated at t = 1 is higher
than 4, namely Y10(1)/Y2(1) ≈ 4.4. This example shows that even the short run output effect can
be substantially different with the same flexibility index.

E Duration Analysis and Generalized Hazard Rate

In this section we consider the Survival and the Hazard Rate as functions of the duration of the
price spells. Duration-based functions are often used in sticky price models. It is interesting
to know whether the information encoded in them is different from that encoded in the size-
distribution of price changes used above. We establish conditions for a non-trivial equivalence
result: the distribution of durations and the variance of price changes together contain the same
information about the fundamentals of the model as the distribution of price changes and frequency
of adjustment. The distribution of spells with one statistic on the size of changes (the variance) is
as informative as the size-distribution of changes and one temporal statistic (the frequency).

Denote by S(t) the Survival function, the probability that a price spell lasts at least t units of
time. We will show that, when X = ∞, an analytical Survival Function S uniquely identifies an
analytical Generalized Hazard Rate function Λ. When X =∞, the Survival function is given by

S(t) = E
[
e−

∫ t
0 Λ(x(s))ds |x(0) = 0

]
for all t ≥ 0 (76)

where the expectation is taken with respect to the paths of the drift-less Brownian motion x with
variance per unit of time equal to σ2. The value of S(t) is the Feynman-Kac formula evaluated at
x = 0. The hazard rate h(t) = −S ′(t)/S(t) measures the probability per unit of time of a price
spell ending conditional on lasting at least t. For example, the Survival function and its associated
hazard rate for the case of a quadratic generalized hazard rate Λ(x) = Λ(0) + κx2 are:

S(t) =
e−tΛ(0)(

cosh
(
t
√

2κσ2
)) 1

2

and h(t) = Λ(0) +

√
κ
σ2

2
tanh

(
t
√

2κσ2
)

for all t ≥ 0 (77)

This was obtained by Kac in his seminal study of what we now know as the Kac formula. The
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next lemma gives the main technical result to establish the link between the Survival function,
which can in principle be measured in the data, and the generalized hazard function Λ(x).

Lemma 4. Fix a value of σ2 > 0, and assume that X = ∞. Assume that S is related to Λ by
equation (76). The derivatives of the Survival function S a time t = 0 and the derivatives of Λ at
x = 0 are related by the recursively generated functions {Fn} as follows:

∂nS(t)

∂tn

∣∣∣
t=0

= Fn(0) and all n = 1, 2, . . . where Fn(·) are given by

Fn+1(x) =
σ2

2

∂2Fn(x)

∂x2
− Λ(x)Fn(x) for all x ∈ R and n = 1, 2, . . . and

F1(x) = −Λ(x) for all x ∈ R

Lemma 4 is the base of an algorithm to compute the derivatives of S at t = 0 given Λ and the
derivatives of Λ at x = 0 given S. Using this lemma, we obtain the main result of this section:

Proposition 15. Assume that σ2 > 0, X = ∞, and Λ satisfies Assumption 1. Let S be the
Survival function of Λ, as in equation (76). If the generalized hazard function Λ is analytical, then
the Survival function S uniquely identifies Λ. Likewise, if the Survival function S is analytical,
then the generalized hazard function Λ uniquely identifies S.

As remarked before, Lemma 4 gives an algorithm to recursively compute an expansion of S
based on the derivatives of Λ, or an expansion of Λ based on the derivatives of S. An implication
of Lemma 4 and Proposition 15 is that the hazard rate and its first three derivatives at zero
duration (t = 0) are given by particularly simple expressions involving the level and first two even
derivatives of the generalized hazard function evaluated at zero price gap, i.e. x = 0:

h(0) = Λ(0) ≥ 0 ,
∂h(t)

∂t
|t=0 =

σ2

2

∂2Λ(x)

∂x2
|x=0 ,

∂2h(t)

∂t2
|t=0 =

(
σ2

2

)2
∂4Λ(x)

∂x4
|x=0 ,

and
∂3h(t)

∂t3
|t=0 =

(
σ2

2

)3
∂6Λ(x)

∂x6
|x=0 − 4

(
σ2

2

∂2Λ(x)

∂x2
|x=0

)2

These formulas give a simple connection between the local behavior of Λ around x = 0 and h around
t = 0. Note that if Λ(x) is, in addition of being symmetric and differentiable in x, increasing in
|x| around x = 0, then Λ′′(0) > 0, and hence the hazard rate as function of duration, h(t), must
be increasing in duration, at least for small durations t. Likewise, if Λ(x) were decreasing in |x|
around x = 0, then Λ′′(0) < 0 and hence h(t) must be locally decreasing in duration.

Comparing with the case of Theorem 2, in this case we use much more restrictive conditions for
Λ, and obtain a more cumbersome representation — an infinite expansion instead of a closed-form
expression involving an integral. In spite of this Theorem 2 and Proposition 15 have the same
flavor: they show that if Λ is analytical and X = ∞, then Λ can be fully identified either using
the information contained in the Survival function, i.e duration on price changes, and σ2, which
can be recovered from Na and the variance of price changes with equation (13). Of course, this
also means that the information on the survival function and the size distribution of price changes
can be used as an over-identifying test of the model.

Finally, we can also estimate C ≡ Λ(0)/Na, the fraction of price changes independent of the
state, by using duration data. Given the results above, C can be estimated as h(0)/Na. This can
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be an alternative to the estimates presented in Table 1 using the size distribution of price changes.
As in Section 4, a correction of unobserved heterogeneity may be important.

F Discrete Distribution of Fixed Costs

Let gi > 0 be the probability of drawing a fixed cost ψi for i = 1, . . . , n− 1, conditional of drawing
a low adjustment cost opportunity. We have 0 < ψ1 < · · · < ψn−1. A firm can always pay a fixed
cost Ψ ≡ ψn and change prices, with ψn > ψn−1. At all points x where v is twice differentiable we
have:

rv(x) =

min

{
Bx2 +

σ2

2
v′′(x) + κ

n−1∑
j=1

min {ψj + v(0)− v(x) , 0}gj , r (ψn + v(0))

}

The optimal decision rule can be described by n thresholds 0 < x̄1 < x̄2 < · · · < x̄n ≡ X. The
optimal decision rule is that conditional on drawing the adjustment cost ψj an adjustment takes
place if |x| ≥ x̄j for j = 1, . . . , n. Note that this implies that:

v(x̄j) + ψj = v(0) for j = 1, 2, . . . , n.

To simplify the notation we let:

λj ≡ κgj for j = 1, . . . , n− 1 and Λ(x) =
n−1∑
k=1

λk 1{x≥x̄k}

To summarize the firm’s problem is defined by parameters r, B, σ2, {λj}n−1
j=1 , {ψj}nj=1. The solution

is given by a set of thresholds {x̄j}nj=1 with 0 < x̄1 < · · · < x̄n.
We can write the value function for each segment j = 1, 2, . . . , n:(

r +

j−1∑
k=1

λk

)
vj(x) = Bx2 +

σ2

2
v′′j (x) +

j−1∑
k=1

[v1(0) + ψk]λk for x ∈ (x̄j−1 , x̄j]

where for convenience we define x̄0 = 0. The value function v must be differentiable at all x ∈ R,
and twice differentiable for all x ∈ R, except x = x̄j for j = 1, . . . , n. Thus we have the boundary
conditions:

v′(0) = v′(x̄n) = 0

F.1 Value function for discrete ψ distribution

The solution of the value function v is characterized by coefficients {aj, bj, cj}nj=1, roots {ηj}nj=1

and thresholds {x̄j}nj=1. In particular, given the thresholds {x̄j}nj=1 we write a linear o.d.e. for
each segment [x̄j−1, x̄j] for j = 1, . . . , n. This o.d.e. is parametrized by three constants aj, bj, cj as
follows:

vj(x) = aj + bjx
2 + cj

(
eηjx + e−ηjx

)
for x ∈ [x̄j−1, x̄j] and j = 1, . . . , n
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where ηj is given by:

ηj =

√
(r +

∑j−1
k=1 λj)

σ2/2

Replacing the non-homogenous solution aj + bjx
2 into the o.d.e. in each segment we have:(

r +

j−1∑
k=1

λk

)
(aj + bjx

2) = Bx2 +
σ2

2
2bj +

j−1∑
k=1

[v1(0) + ψk]λk for x ∈ [x̄j−1, x̄j] and j = 1, . . . , n

Matching the terms quadratic in x, and using that v1(0) = a1 + 2c1, we get:(
r +

j−1∑
k=1

λk

)
bj = B for j = 1, . . . , n (78)

Matching the constant we have:(
r +

j−1∑
k=1

λk

)
aj = σ2bj +

j−1∑
k=1

[a1 + 2c1 + ψk]λk for j = 1, . . . , n (79)

The continuity and (once) differentiability at x = x̄j for j = 1, . . . , n− 1 gives:

aj+1 +bj+1 (x̄j)
2 +cj+1

(
eηj+1x̄j + e−ηj+1x̄j

)
= aj+bj (x̄j)

2 +cj
(
eηj x̄j + e−ηj x̄j

)
for j = 1, . . . , n−1

(80)
and

2bj+1x̄j + cj+1ηj+1

(
eηj+1x̄j − e−ηj+1x̄j

)
= 2bjx̄j + cjηj

(
eηj x̄j − e−ηj x̄j

)
for j = 1, . . . , n− 1 (81)

value matching and smooth pasting at x̄n gives:

ψn + a1 + 2c1 = an + bn (x̄n)2 + cn
(
eηnx̄n + e−ηnx̄n

)
(82)

0 = 2bnx̄n + cnηn
(
eηnx̄n − e−ηnx̄n

)
(83)

The optimal return point conditions, v′(0) = 0, is automatically satisfied by symmetry of the value
functions.

Thus we have 4×n unknowns, namely {x̄j, aj, bj, cj}nj=1, and 4×n equations, namely n equations
matching quadratic terms, i.e. equations (78), n equations matching constants, i.e. equations (79),
n−1 equations enforcing continuity, i.e. equations (80), n−1 equations enforcing differentiability,
i.e. equations (81), and two more equations on the boundary x̄n enforcing value matching, i.e.
equation (82), and smooth pasting, i.e. equation (83).

F.2 Inverse problem: recovering the cost function

We now solve an inverse problem, namely how to recover the menu cost values ψj that underlie a
given observed hazard function Λ(x) at given thresholds {x̄j}. The main result is summarized by
the next proposition:

Proposition 16. Fix a discount rate, curvature and variance r, B, σ2 > 0, and a step function
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Λ giving the probability per unit of time of a price adjustment for |x| < xn. The function Λ
is described by a set of probability rates for costs {λj}n−1

j=1 ∈ Rn
+ for n ≥ 1, and a set of n

thresholds {x̄j}nj=1 with 0 = x̄0 < x̄1 < · · · < x̄n. Then there is a unique set of n fixed costs
0 = ψ0 < ψ1 < · · · < ψn so that the n thresholds {x̄j}nj=1 solve the firm’s problem defined

by r, B, σ2, {λj}n−1
j=0 , {ψj}nj=1. Moreover, the fixed costs {ψj}nj=1 and the coefficients of the value

function {aj, bj, cj}nj=1 solve a system of linear equations.

Proof. (of Proposition 16) We first solve for each of the coefficients bj using equation (78) for
each j = 1, . . . , n.

We note that the thresholds {x̄j}nj=1 are given and that roots {ηj}nj=1 can be computed as
functions of given parameters.

Using the coefficients {bj}nj=1, we solve for the coefficients {cj}nj=1. First we solve for cn enforcing
smooth pasting at x̄n given by equation (83). Using cn we recursively use cj+1 to solve for cj
imposing differentiability between adjecent segments, i.e. equations (81) for j = n−1, n−2, . . . , 1.

Next we solve for the {aj}nj=1, given {bj, cj}nj=1. First, use rv(0) = σ2

2
v′′(0) = σ2

2
(2b1 + (η1)22c1)

and v(0) = a1 + 2c1 to solve for a1, namely a1 = σ2

r
(b1 + η2

1c1)− 2c1 . Next, use equations (80) to
solve recursively for {aj}nj=2.

Finally, we solve for the fixed costs {ψj}nj=1 using value matching and the values of {aj, bj, cj}nj=1.
They give:

ψj = v(x̄j)− v(0) = aj + bj(x̄j)
2 + cj

(
eηj x̄j + e−ηj x̄j

)
− a1 − 2c1

for j = 1, . . . , n. �

G Solution for the firm’s alternative setup of Section 2.2

The first order condition for choice of ` in equation (9) are:

c′− (`∗ (x)) ≤ v(x)− v(0) ≤ c′+ (`∗ (x)) for all x

where `∗ (x) denotes the optimal policy, and where c′−(·) and c′+(·) denote the right and left
derivatives of c. As in the previous case, we have that if Ψ < ∞ there is a barrier X < ∞ for
which: v(X) = v(0)+Ψ and v′(X) = 0. Finally, by the same reasons as before, we have symmetry,
i.e. v(x) = v(−x), and `∗(x) = `∗(−x). As before we can summarize the decision rule of the firm
for x ∈ (−X,X) with a generalized hazard function:

Λ (x) = `∗(x) for all x

To simplify the discussion, next we describe the case of a cost c that is continuously differentiable
and strictly convex, where we simply have:

c′ (`∗ (x)) = v(x)− v(0) and Λ(x) = (c′)
−1

(v(x)− v(0)) for all x

We note that since v(x) is strictly increasing in x for x ∈ (0, X), and c(`) is convex, then Λ(x)
must also be increasing in x for x ∈ (0, X).

Replacing `∗ into the HBJ equation we obtain:

rv(x) = min

{
Bx2 +

σ2

2
v′′(x) + `∗(x) (v(0)− v(x)) + c(`∗(x)) , r (Ψ + v(0))

}
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Let us assume that the cost function c has a continuous derivative. Defining, as before U(x) =
v(x) − v(0), with u = U ′ = v′, we can differentiate the HBJ equation in x ∈ (0, X), and use the
envelope to obtain:

[r + Λ(x)]u(x) = 2Bx+
σ2

2
u′′(x) .

Using the boundaries u(0) = u(X) = 0, and the logic used in the proof of Theorem 1 it is then

straightforward to solve for Ψ =
∫ X

0
u(z)dz. The marginal cost of switching intensity is recovered

using Λ(x) = (c′)−1(U(x)). The cost function itself, just as the value function, is only detemined
up to an additive constant, which is straightforward to verify from equation (9).

H Properties of Distribution of Menu Cost

In this appendix we note that the posited behavior of Λ in a neighbourhood of x = 0 or x = |X|
determines whether the underlying density g is bounded. It is shown in equation (2) that the
hazard function inherits the shape of the value function because of the underlying optimization:
when the firm draws a fixed cost, what matters is how the value of the draw compares to the gains
from adjustment. Taking a first order derivative of equation (2) gives

Λ′(x) = κ g(v(x)− v(0)) v′(x) (84)

A bounded density g would make Λ′(x) have zero limits at x = 0 and x = X because of the
smooth-pasting conditions on v(x) at these points. Thus, if the hazard function of the inverse
problem (the one that solves for g given Λ) is not flat at 0 or Ψ, then the density g must be
diverging. We formalize this observation next:

Corollary 5. Let ε > 0 and suppose Λ′(x) is bounded away from zero for x ∈ (0, ε). Then
g(ψ) is unbounded on any (0, ψ). Likewise, if Λ′(x) is bounded away from zero for x ∈ (X − ε,X)
then g(ψ) is unbounded on any (ψ,Ψ).27

We can also characterize the behavior of the density g around ψ = 0 for different forms of Λ
arounf x = 0. Take the limiting elasticity of the hazard

ν = lim
x↓0

xΛ′(x)

Λ(x)− Λ(0)

If Λ is symmetric and smooth, it admits a quadratic approximation close to zero, and ν = 2.
Interestingly, deviations from ν = 2 imply irregular behavior of g. Theorem 1 states that

g(x) =
Λ′(x)

κu(x)

But u(x) converges to zero as x→ 0, so the limit is tricky. To resolve the indeterminacy, notice
that u(x) goes to zero linearly, since u′′(0) = 0 (immediate from the equation (4) defining u(x)
in Lemma 1). Thus whether the limit is (i) zero, (ii) positive and finite, or (iii) infinite, depends
respectively on whether Λ′(x) goes to zero (i) faster than a linear rate (ν > 2), (ii) at a linear rate
(ν = 2), (iii) slower than a linear rate (ν < 2). We can formalize this:

27Since Λ(x) is symmetric, to be smooth at zero it has to have Λ′(0) = 0. The proof is done by standard analysis.
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Corollary 6. Suppose that Λ′(x) and g(ψ) both have (possibly infinite) right limits at zero.
Then limψ↓0 g(ψ) =∞ for ν < 2, 0 < limψ↓0 g(ψ) <∞ for ν = 2, and limψ↓0 g(ψ) = 0 for ν > 2.

This corollary states that a quadratic hazard function implies a density of ψ that is positive
and finite around ψ = 0. If the leading term in Λ(x) is higher than quadratic (ν > 2) then the
density must be zero, meaning that G is flat close to ψ = 0. A hazard function with a leading
term ν < 2 implies a distribution of ψ with density that is diverging around ψ = 0.

I Alternative Normalization

We consider an alternative normalization to one used in Proposition 2. This normalization requires
that X < ∞. For a triplet {σ2, X,Λ} we can define a new problem represented by pair {ρ, Λ̂}
where Λ̂ : (−1, 1)→ R+ and where ρ is a scalar defined as follows:

Λ̂(z) =
Λ(zX)

κ
for all z ∈ [−1, 1] and ρ =

2κX2

σ2
(85)

Note that this is the normalization used in Proposition 2 with b = 1/X. This is a slight gen-
eralization of Proposition 2, in that it allows to have some comparative static with respect to
κ.

Given the triplet {σ2, X,Λ} we can solve for f as indicated in equation (10). And given the
pair {ρ, Λ̂} we can solve for the probability density f̂ , using a change of variables:

f̂(z) ≡ f (zX)X for all z ∈ [−1, 1]

We note that f̂ satisfies the

Λ̂(z) ρ f̂(z) = f̂ ′′(z) for all z ∈ [−1, 1] and z 6∈ Z (86)

where z ∈ Z if z = x/X and x ∈ J. Moreover, the density f̂ must satisfy

f̂(1) = f̂(−1) = 0 and

∫ 1

−1

f̂(z)dz = 1

J Functional forms of 〈f (x),m(x), T (x)〉 for integer ν

The invariant density f has to be symmetric around x = 0, and has to satisfy:

Λ(x)f(x) =
σ2

2
f ′′(x) for all x ∈ [0, X] , (87)

1

2
=

∫ X

0

f(x)dx and f(X) = 0 . (88)
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The contribution of an individual firm to the IRF is antisymmetric around x = 0 and satisfies the
following:

Λ(x)m(x) = −x+
σ2

2
m′′(x) for all x ∈ [0, X] , (89)

m(0) = m(X) = 0 . (90)

Fianlly, T (x) is symmetric around x = 0 and satisfies

Λ(x)T (x) = 1 +
σ2

2
T (x) for all x ∈ [0, X] ,

T (X) = 0 and T ′(0) = 0 .

The latter equality is a consequence of T (·) being continuously differentiable ay zero and antisym-
metric.

Denote y = σ2/2a. We will assume that the functions of interest are analytical, so we can write
them as:

f(x) =
∞∑
k=0

αkx
k for x ∈ [0, X]

m(x) =
∞∑
k=0

βkx
k for x ∈ [0, X]

T (x) =
∞∑
k=0

γkx
k for x ∈ [0, X]

so that, in particular, γ0 = T (0). Inserting these expressions into the equations above and using
the functional form for Λ(·), we obtain:

a
∞∑
k=0

αkx
k+ν =

σ2

2

∞∑
k=2

αkk(k − 1)xk−2 for x ∈ [0, X]

a
∞∑
k=0

βkx
k+ν =

σ2

2

∞∑
k=2

βkk(k − 1)xk−2 − x for x ∈ [0, X]

a
∞∑
k=0

γkx
k+ν =

σ2

2

∞∑
k=2

γkk(k − 1)xk−2 + 1 for x ∈ [0, X]

Matching the coefficient of each of the powers of x we have

αk = y(k + ν + 2)(k + ν + 1)αk+ν+2 for k ≥ 0

βk = y(k + ν + 2)(k + ν + 1)βk+ν+2 for k ≥ 0

γk = y(k + ν + 2)(k + ν + 1)γk+ν+2 for k ≥ 0

The symmetry and smoothness properties also lead to

β0 = β2 = γ1 = 0 (91)
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Relabelling the coefficients, we can write the sums as

f(x) = α0

(
1 +

∞∑
j=1

ξp,jy
−jxj(ν+2)

)
+ α1x

(
1 +

∞∑
j=1

ηp,jy
−jxj(ν+2)

)

m(x) = β1x

(
1 +

∞∑
j=1

ξm,jy
−jxj(ν+2)

)
+ β3x

3

(
1 +

∞∑
j=1

ηm,jy
−jxj(ν+2)

)

T (x) = γ0

(
1 +

∞∑
j=1

ξt,jy
−jxj(ν+2)

)
+ γ2x

2

(
1 +

∞∑
j=1

ηt,jy
−jxj(ν+2)

)

Here the coefficients ξ·,j and η·,j are given by

ξp,j =

j∏
i=1

1

i(ν + 2)(i(ν + 2)− 1)
ηp,j =

j∏
i=1

1

i(ν + 2)(i(ν + 2) + 1)

ξm,j =

j∏
i=1

1

i(ν + 2)(i(ν + 2) + 1)
ηm,j =

j∏
i=1

1

(i(ν + 2) + 2)(i(ν + 2) + 3)

ξt,j =

j∏
i=1

1

i(ν + 2)(i(ν + 2)− 1)
ηt,j =

j∏
i=1

1

(i(ν + 2) + 1)(i(ν + 2) + 2)

Now define the following parameter:

Z =
Xν+2

y
= 2aXνX

2

σ2
= 2κT0

It will be useful in pinning down the coefficients. Here Λ̃ is the left limit of the hazard rate when
x approaches X, and T0 is the expected time to adjustment when a = 0.

Consider first f(·). The boundary condition is

0 = f(X) = α0

(
1 +

∞∑
j=1

ξp,jy
−jXj(ν+2)

)
+ α1x

(
1 +

∞∑
j=1

ηp,jy
−jXj(ν+2)

)

= α0

(
1 +

∞∑
j=1

ξp,jZ
j

)
+ α1X

(
1 +

∞∑
j=1

ηp,jZ
j

)

Define additionally ξ·,0 = η·,0 = 1. The condition that f(·) is a density states

1

2
=

∫ X

0

f(x)dx = α0X

(
1 +

∞∑
j=1

ξp,jZ
j

j(ν + 2) + 1

)
+ α1X

2

(
1

2
+
∞∑
j=1

ηp,jZ
j

j(ν + 2) + 2

)

= α0X

∞∑
j=0

ξp,jZ
j

j(ν + 2) + 1
+ α1X

2

∞∑
j=0

ηp,jZ
j

j(ν + 2) + 2

36



This leads to

α1 =
1

2X2

(∑∞
j=0 ξp,jZ

j
)

∑∞
j=0

ηp,jZ
j

j(ν + 2) + 2

(∑∞
j=0 ξp,jZ

j
)
−
∑∞

j=0

ξp,jZ
j

j(ν + 2) + 1

(∑∞
j=0 ηp,jZ

j
)

=
1

2X2
α̂1(ν, Z)

α0 = − 1

2X

(∑∞
j=0 ηp,jZ

j
)

∑∞
j=0

ηp,jZ
j

j(ν + 2) + 2

(∑∞
j=0 ξp,jZ

j
)
−
∑∞

j=0

ξp,jZ
j

j(ν + 2) + 1

(∑∞
j=0 ηp,jZ

j
)

=
1

2X
α̂0(ν, Z)

Now observe that the integral of f(x)x2 is in fact proportional to X2 for a fixed Z:∫ X

0

f(x)x2dx = α0X
3

∞∑
j=0

ξp,jZ
j

j(ν + 2) + 3
+ α1X

4

∞∑
j=0

ηp,jZ
j

j(ν + 2) + 4

=
X2

2

[
α̂0(ν, Z)

∞∑
j=0

ξp,jZ
j

j(ν + 2) + 3
+ α̂1(n, Z)

∞∑
j=0

ηp,jZ
j

j(ν + 2) + 4

]

To determine m(·) and T (·), it is useful to consider separately the cases ν ≥ 1 and ν = 0. Start
with ν ≥ 1. In this case, in addition to equation (91), we know that

3σ2β3 = 1 and σ2γ2 = −1

The boundary conditions are m(X) = T (X) = 0, so

−β1 =
X2

3σ2

(
1 +

∑∞
j=1 ηm,jZ

j

1 +
∑∞

j=1 ξm,jZ
j

)

γ0 =
X2

σ2

(
1 +

∑∞
j=1 ηt,jZ

j

1 +
∑∞

j=1 ξt,jZ
j

)

The functional forms are then

m(x) = −xX
2

3σ2

(
1 +

∑∞
j=1 ηm,jZ

j

1 +
∑∞

j=1 ξm,jZ
j

)
∞∑
j=0

ξm,jy
−jxj(ν+2) +

x3

3σ2

∞∑
j=0

ηm,jy
−jxj(ν+2)

T (x) =
X2

σ2

(
1 +

∑∞
j=1 ηt,jZ

j

1 +
∑∞

j=1 ξt,jZ
j

)
∞∑
j=0

ξt,jy
−jxj(ν+2) − x2

σ2

∞∑
j=0

ηt,jy
−jxj(ν+2)

37



Observe that for T (0) we have

T (0) =
X2

σ2

(
1 +

∑∞
j=1 ηt,jZ

j

1 +
∑∞

j=1 ξt,jZ
j

)
= T0

(
1 +

∑∞
j=1 ηt,j(2κT0)j

1 +
∑∞

j=1 ξt,j(2κT0)j

)

At a = 0 or, equivalently, κ = 0, we have T (0) = T0.
Now consider the case ν = 0. Here the conditions we add to equation (91) are

aβ1 = 3σ2β3 − 1 and aγ0 = σ2γ2 + 1 (92)

Plugging them into the boundary conditions m(X) = T (X) = 0,

−β1 =
X2
∑∞

j=0 ηm,jZ
j

3σ2
∑∞

j=0 ξm,jZ
j + aX2

∑∞
j=0 ηm,jZ

j

β3 =

∑∞
j=0 ξm,jZ

j

3σ2
∑∞

j=0 ξm,jZ
j + aX2

∑∞
j=0 ηm,jZ

j

γ0 =
X2
∑∞

j=0 ηt,jZ
j

σ2
∑∞

j=0 ξt,jZ
j + aX2

∑∞
j=0 ηt,jZ

j

−γ2 =

∑∞
j=0 ξt,jZ

j

σ2
∑∞

j=0 ξt,jZ
j + aX2

∑∞
j=0 ηt,jZ

j

The functional forms in this case are

m(x) = −x
X2
(∑∞

j=0 ηm,jZ
j
)(∑∞

j=0 ξm,jy
−jxj(ν+2)

)
3σ2

∑∞
j=0 ξm,jZ

j + aX2
∑∞

j=0 ηm,jZ
j

+ x3

(∑∞
j=0 ξm,jZ

j
)(∑∞

j=0 ηm,jy
−jxj(ν+2)

)
3σ2

∑∞
j=0 ξm,jZ

j + aX2
∑∞

j=0 ηm,jZ
j

T (x) =
X2
(∑∞

j=0 ηt,jZ
j
)(∑∞

j=0 ξt,jy
−jxj(ν+2)

)
σ2
∑∞

j=0 ξt,jZ
j + aX2

∑∞
j=0 ηt,jZ

j

− x2

(∑∞
j=0 ξt,jZ

j
)(∑∞

j=0 ηt,jy
−jxj(ν+2)

)
σ2
∑∞

j=0 ξt,jZ
j + aX2

∑∞
j=0 ηt,jZ

j

Observe that in this case for T (0) we have

T (0) =
X2

σ2

( ∑∞
j=0 ηt,jZ

j∑∞
j=0 ξt,jZ

j + aX2

σ2

∑∞
j=0 ηt,jZ

j

)

= T0

(
1 +

∑∞
j=1 ηt,j(2κT0)j

1 + κT0 +
∑∞

j=1 ξt,j(2κT0)j +
∑∞

j=1 ηt,j(2κT0)j

)

When κ = 0, we have T (0) = T0.
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We know that the adjustment frequency is given by

Na =
1

T (0)

Hence, the adjustment frequency can be represented as a function of κ and T0. The same is true
for the kurtosis of price changes. From equation (17),

Kurt(∆p) =
2
[∫ X

0
x4Λ(x)f(x)dx−X4 σ2

2
f ′(X)

]
Na

1

[V ar(∆p)]2

=
2Na

[∫ X
0
x4Λ(x)f(x)dx−X4 σ2

2
f ′(X)

]
σ4

=
12Na

σ2

∫ X

0

f(x)x2dx

= 6Na
X2

σ2

∑∞
j=0

ηp,jZ
j

j(ν + 2) + 4

(∑∞
j=0 ξp,jZ

j
)
−
∑∞

j=0

ξp,jZ
j

j(ν + 2) + 3

(∑∞
j=0 ηp,jZ

j
)

∑∞
j=0

ηp,jZ
j

j(ν + 2) + 2

(∑∞
j=0 ξp,jZ

j
)
−
∑∞

j=0

ξp,jZ
j

j(ν + 2) + 1

(∑∞
j=0 ηp,jZ

j
)

= 6NaT0

∑∞
j=0 ϕK,j(2κT0)j∑∞
j=0 χK,j(2κT0)j

Here the coefficients {ϕK,j, χK,j}∞j=0 are given by

ϕK,j =

j∑
i=0

(
ξp,j−iηp,i

i(ν + 2) + 4
− ηp,j−iξp,i
i(ν + 2) + 3

)

χK,j =

j∑
i=0

(
ξp,j−iηp,i

i(ν + 2) + 2
− ηp,j−iξp,i
i(ν + 2) + 1

)
As expected, when κ = 0 we have Na = 1/T0 and

Kurt(∆p) = 1.

The coefficients {ϕN,j, χN,j} for Na are taken from the corresponding formula for T (0) in the cases
ν = 0 and ν ≥ 1. In both cases ϕN,0 = χN,0 = 1. To verify ϕK,0 = −1/12 and ψK,0 = 1/2, plug
ξp,0 = ηp,0 = 1. For ϕK,1 and χK,1, recall that

ξp,1 =
1

(ν + 2)(ν + 1)
and ηp,1 =

1

(ν + 2)(ν + 3)

The first derivative of Kurt(∆p)/(6Na) evaluated at κ = 0 is

∂

∂κ

(
Kurt(∆p)

6Na

) ∣∣∣
κ=0

= T0
χK,0ϕK,1 − ϕK,0χK,1

χ2
K,0

= −C(6ϕK,1 − χK,1)
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for some positive constant C. Plugging the terms,

ϕK,1 = − 1

12(ν + 5)(ν + 6)

χK,1 = − 1

2(ν + 3)(ν + 4)

Hence,

∂

∂κ

(
Kurt(∆p)

6Na

) ∣∣∣
κ=0

=
C

2

(
1

(ν + 5)(ν + 6)
− 1

(ν + 3)(ν + 4)

)
< 0

This proves the fact that Kurt(∆p)/(6Na) decreases for small κ.

K Special Cases of Interest

K.1 m and f in the discrete, unbounded case

We assume that we can divide [0,∞) into N segments, each one where Λ(x) is constant at the
value ρk > 0 and with thresholds {x̄k}Nk=0 as follows. The values of {x̄k} and {ρk} are given. We
let

0 = x̄0 < x̄1 < x̄2 < · · · < x̄N−1 < x̄N =∞

The function Λ(x) takes N different strictly positive values denoted by {ρk}Nk=1, so that:

Λ(x) = ρk for x ∈ [x̄k−1, x̄k) for k = 1, 2, . . . , N

0 < ρ1 < ρ2 < · · · < ρN .

Since m(·) and f(·) solve Kolmogorov equations (backward for m(·) and forward for f(·)), on each
segment they can parametrized by a pair of unknown constants:

m(x) = Mk(x) = − x

ρk
+ uke

ηkx + vke
−ηkx for x ∈ [x̄k−1, x̄k]

f(x) = P̄k(x) = pke
ηkx + qke

−ηkx for x ∈ [x̄k−1, x̄k]

ηk =

√
2ρk
σ2

for k = 1, 2, . . . , N . We require that f(·) and m(·) be continuously differentiable on (0,∞). This
implies that

Mk(x̄k) = Mk+1(x̄k) and M ′
k(x̄k) = M ′

k+1(x̄k) for all k = 1, 2, . . . , N − 1 (93)

P̄k(x̄k) = P̄k+1(x̄k) and P̄ ′k(x̄k) = P̄ ′k+1(x̄k) for all k = 1, 2, . . . , N − 1 (94)

In addition we have the following conditions. Since m is antisymmetric around zero we require
m(0) = 0. Since f is a density, it must integrate to one, and since it symmetric it must integrate
to one half over positive x. Finally, both m and f should converge to −x/ρN and 0 as x → ∞.
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These conditions are sometimes referred as no-bubble conditions. Hence:

M1(0) = 0,
1

2
=

∫ ∞
0

f(x)dx =
N∑
k=1

∫ x̄k

x̄k−1

P̄k(x)dx, and pN = uN = 0

Overall, we have 2N unknowns, namely {uk, vk}Nk=1, and 2N linear equations for m(·), namely
2(N − 1) from equation (93), that m(0) = 0, and the no-bubble condition. Likewise for f(·). We
can write these equations and solve for the constants. Once we have them we can evaluate:∫ ∞

0

x2f(x)dx =
N∑
k=1

∫ x̄k

x̄k−1

x2P̄k(x)dx and

∫ ∞
0

m(x)f(x)dx =
N∑
k=1

∫ x̄k

x̄k−1

M ′
k(x)P̄k(x)dx .

and check if:

N∑
k=1

∫ x̄k

x̄k−1

x2P̄k(x)dx = −σ2

N∑
k=1

∫ x̄k

x̄k−1

M ′
k(x)P̄k(x)dx .

Now we will determine the coefficients {pk, qk}Nk=1 and {uk, vk}Nk=1. Start with the ones for p̄(·).
Combining the continuity and differentiability conditions, we can write the coefficients recursively
for k = 1, 2...N − 1:

pk =
1

2

(
1 +

ηk+1

ηk

)
e(ηk+1−ηk)xkpk+1 +

1

2

(
1− ηk+1

ηk

)
e−(ηk+1+ηk)xkqk+1

qk =
1

2

(
1 +

ηk+1

ηk

)
e(ηk−ηk+1)xkqk+1 +

1

2

(
1− ηk+1

ηk

)
e(ηk+1+ηk)xkpk+1

We also have the terminal condition pN = 0 and the normalization (the density must integrate to
one half over positives). Observe that the coefficients are in fact linear in qN , so qN can easily be
found from the normalization. The integral is

1

2
=

∞∫
0

f(x)dx =
N−1∑
k=0

pk+1
eηk+1xk+1 − eηk+1xk

ηk+1

−
N−1∑
k=0

qk+1
e−ηk+1xk+1 − e−ηk+1xk

ηk+1

We can use linearity: letting pk = p̂kqN and qk = q̂kqN and plugging this into the normalization,
we can write

1

2
=

N−1∑
k=0

(
p̂k+1

eηk+1xk+1 − eηk+1xk

ηk+1

− q̂k+1
e−ηk+1xk+1 − e−ηk+1xk

ηk+1

)
qN (95)

The numbers {p̂k, q̂k}N−1
k=1 are easily obtained from {pk, qk}N−1

k=1 computed recursively for some pre-
supposed value of qN . Knowing them, we can recover the real qN from equation (95) and recompute
the real {pk, qk}N−1

k=1 .
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Now we will determine the coefficients for m(·). The continuity and differentiability conditions
lead to the following recursive representation:

uk =
1

2

(
1 +

ηk+1

ηk

)
e(ηk+1−ηk)xkuk+1+

1

2

(
1− ηk+1

ηk

)
e−(ηk+1+ηk)xkvk+1

+
1

2

(
x+

1

ηk

)(
1

ρk
− 1

ρk+1

)
e−ηkxk

vk =
1

2

(
1 +

ηk+1

ηk

)
e(ηk−ηk+1)xkvk+1+

1

2

(
1− ηk+1

ηk

)
e(ηk+1+ηk)xkuk+1

+
1

2

(
x− 1

ηk

)(
1

ρk
− 1

ρk+1

)
e−ηkxk

We also have the terminal condition uN = 0 and the antisymmetry condition m(0) = 0. The
latter one reduces to u1 + v1 = 0. Now we can observe that all uk and vk are in fact affine in vN :
uk = ûkvN + ũk and vk = v̂kvN + ṽk. The condition m(0) = 0 can be written as

0 = u1 + v1 = (û1 + v̂1)vN + (ũ1 + ṽ1) (96)

The coefficients {ûk, v̂k}N−1
k=1 and {ũk, ṽk}N−1

k=1 can be found from {uk, vk}N−1
k=1 computed recursively

for two different presupposed values of vN (we need two because the functions are affine, not linear).
After that, we can recover the real vN from equation (96) and recompute the real {uk, vk}N−1

k=1 .
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