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Abstract
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∗I Fernando Álvarez, Mikhail Golosov, Lars Peter Hansen, and Guido Lorenzoni for their insightful comments.
I also thank Mark Aguiar, Manuel Amador, Yan Bai, Maryam Farboodi, Zhiyu Fu, Tarek Hassan, Elena Istomina,
Greg Kaplan, Rohan Kekre, Paymon Khorrami, Dmitry Mukhin, Esteban Rossi-Hansberg, Robert Shimer, Marcos
Sora, Aleh Tsyvinsky, and all seminar participants.

mailto:aleksei.oskolkov@yale.edu


1 Introduction

There is an aggregate cycle in international capital flows and asset prices. Miranda-Agrippino and

Rey (2022) show that one global factor explains more that 20% of the variation in gross capital flows

across the world. This factor is strongly correlated with measures of global risk-taking capacity and

the dominant component in asset prices. In booms, when asset prices are high, investors tend to

accumulate foreign holdings. In global downturns, they sell foreign assets and shift their portfolios

toward domestic markets, which is what the international finance literature calls “retrenchment”.

Countries are not equally exposed to the cycle. Emerging markets are especially strongly

affected by changes in the global risk appetite, their asset prices are more volatile, and risk premia

on their assets are higher. At the same time, capital flows are more strongly correlated with

global aggregates in advanced economies. In downturns, advanced economies see larger outflows of

foreign investment. Their local investors, on the other hand, sell more of their external assets than

investors from emerging markets, responding to negative shocks with more active retrenchment.

I study global financial shocks in a dynamic heterogeneous-country model that reconciles these

two facts in equilibrium. In the model, countries issue risky assets exposed to country-specific risk.

Markets are segmented: the world relies on a global intermediary who trades with local agents

in all countries and facilitates capital flows. Shocks to the intermediary’s risk-taking capacity

cause aggregate capital flight events as it sells risky assets around the world. The reaction of local

investors to capital flight is heterogeneous. In advanced economies, local investors have substantial

external assets and readily use them to buy their domestic assets that the global intermediary tries

to sell. These local investors can take on additional risk without a major increase in risk premia.

Foreign demand shocks lead to large asset sales with little movement in expected returns. In

emerging economies, the pool of domestic investors is thin. They cannot buy as much of the

asset stock from the global intermediary, and their asset markets adjust to foreign demand shocks

through prices rather than quantities. Risk premia rise sharply in these countries, as foreign

investors have nobody to sell to, and higher expected returns have to convince them to stay.

I show empirically that advanced economies do indeed see larger outflows of foreign investment

in times of aggregate capital flight, both in dollars and as a share of their countries’ external

liabilities. Local investors in these countries sell more of their foreign assets, again, both in absolute

terms and relative to external liabilities. At the same time, equities and government bonds in

advanced economies outperform those in emerging markets in capital flight events. The model

interprets this as evidence for a higher elasticity of local asset demand in developed economies.

Adjustment to shifts in foreign demand mainly operates through the quantity margin, insulating

asset prices from global shocks. I show that the model generates these heterogeneous elasticities

of domestic demand without intrinsic differences between countries: all local investors have the

same preferences, and all risky assets have the same properties of cash flows. The only difference
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between countries is the history of domestic shocks, which makes their local agents rich or poor,

and hence better or worse equipped to replace foreign investors in times of global capital flight. I

use the model to study general equilibrium implications of the heterogeneous responses to capital

flight, derive the responses of the entire cross-section of asset prices and the global risk-free rate,

and characterize international wealth redistribution caused by global financial shocks.

The model economy consists of a continuum of countries and a global intermediary. Each

country is endowed with a Lucas tree, with output shocks independent across countries. Local

agents hold these domestic trees and buy foreign assets for diversification. Markets are segmented:

agents cannot invest in other countries directly. Instead, they hold risk-free bonds issued by the

global intermediary, who invests in all trees. The intermediary is based in a special country, a

stand-in for the US, and is fully responsible for international capital flows. The only purpose of

the US in the model is to house the intermediary, and I exclude it from my analysis of cross-country

heterogeneity because of its central position in the global financial system.

The intermediary’s risk-taking capacity is limited by a value-at-risk constraint, which prevents

it from taking advantage of a fully diversified portfolio with a continuum of uncorrelated assets.

The intermediary demands a premium for holding country-specific risk. As a result, in equilibrium,

international risk-sharing is incomplete. Agents retain exposure to domestic shocks. The history

of dividends determines their current wealth. There is a non-degenerate wealth distribution, and

countries continually move around the distribution following good and bad output spells.

A country’s wealth at a given point in time determines the market premium for its idiosyncratic

risk and portfolio composition of local investors. In the left tail of the distribution, wealth is scarce.

Country risk premia are high, and local investors hold risky portfolios in which domestic trees

dominate the intermediary’s bonds, the riskless foreign asset. The intermediary partly compensates

for the scarcity of domestic wealth, but its demand is limited by the value-at-risk constraint. In

the right tail of the wealth distribution, local investors have large external holdings. They are

saturated with safe assets and do not demand high risk premia at home. Their portfolios have low

volatility, and these rich countries enjoy stable wealth and consumption dynamics.

Uninsured risk creates precautionary motives and depresses the global interest rate. The mag-

nitude of the interest rate depression is related to the average country-specific price of risk, for

which the model provides an analytical expression. I show that, for small shocks, prices of trees

in all countries can be decomposed into three parts: the present discounted value of dividends,

the country-specific discount for output risk, and the surcharge coming from the low global rates.

Local wealth determines the size of the risk discount. In poor countries, this term dominates,

reflecting a thin investor base. In rich countries, the risk discount is small, the surcharge term

dominates, and their risky assets are overpriced compared to the fundamental cash flows.

The tightness of the intermediary’s value-at-risk constraint serves as a source of the global

shock. An exogenous tightening makes holding country risk on its balance sheet more costly, and
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the intermediary tries to sell risky assets around the world. The left tail of the wealth distribution

is affected more: in the run-up to the shock, the intermediary’s position is larger in riskier countries

with higher expected returns, and this is where it tries to sell more. Emerging markets are the

primary target of a sudden stop. However, the main difference between them and advanced

economies is in the reaction of local investors. In rich countries, local investors retrench, selling

external assets to buy domestic ones, and easily replace foreign demand. In poor countries, they

cannot absorb as much as the intermediary is willing to sell, and prices adjust instead. The rise

in risk premia is concentrated in the left tail, and the outflow of foreign investors in the right.

Importantly, in general equilibrium, risky assets in rich countries act as safe assets: they

appreciate in bad times. The reason is that the global risk-free rate falls in times of capital flight

because a tighter value-at-risk constraint increases the price of risk in all markets, strengthening

precautionary motives. This inflates asset prices, counteracting the rise in risk premia. With small

shocks, I show analytically that this interest rate effect dominates in rich countries, and the prices

of their risky assets rise amid capital flight. This outcome is endogenous. More elastic domestic

demand in advanced economies, more active retrenchment in equilibrium, and rising asset prices

in downturns are only due to larger accumulated external assets.

Global financial shocks redistribute wealth. Advanced economies enjoy capital gains on their

assets while emerging markets make losses, and wealth dispersion increases. The intermediary is

exposed to risky assets in emerging markets as well. Absorbing part of the losses on these, the

intermediary provides insurance to poorer countries. This outcome looks like a wealth transfer

from the special country, where the intermediary is housed, to the rest of the world. These wealth

transfers are well-documented: Maggiori (2017) notes their large size and generates them in a model

where the US has more financial depth and takes on the role of the global insurer. Gourinchas

and Rey (2022) refer to this pattern as “exorbitant duty” of the financial hegemon.

Like in Maggiori (2017), Kekre and Lenel (2021), Sauzet (2023), Devereux, Engel, and Wu

(2023), and other models, exorbitant duty in my model accompanies “exorbitant privilege”: in-

termediation profits in normal times allow the special country to run perpetual trade and current

account deficits despite its negative net foreign asset position. Unlike prior work, I show that

the intermediary also makes capital gains on its holdings in advanced economies in bad times.

Wealth transfers flow from advanced economies through the special country to emerging markets.

Rich countries indirectly insure poor ones by limiting the intermediary’s losses, which is important

because emerging markets are exposed to the intermediary’s net worth especially strongly.

Taking the model to the data, I add global output shocks to financial shocks and estimate it

with the time series of global equity prices and aggregate capital flows. Without targeting moments

of advanced economies and emerging markets separately, I show that the model can qualitatively

reproduce their differences: equity prices are more volatile in the latter, while outward financial

flows, computed relative to countries’ external liabilities, are more volatile in the former.

3



I extract the principal component from the cross-country panel of capital flows and use it as

the empirical measure of the global financial cycle. As an alternative, I use two measures of the

global risk-taking capacity: VIX and the excess bond premium of Gilchrist and Zakraǰsek (2012).

These variables are strongly, although imperfectly, correlated with aggregate flows, and empirical

results are qualitatively similar if I use them as a measure of the global financial cycle instead.

A one standard deviation fall in aggregate capital flows is associated with advanced economies

losing 2pp more of their external liabilities. This measure does not include valuation changes,

only counting transactions. Foreign investors in advanced economies sell more of their holdings

in bad times. At the same time, the relative performance of equities in advanced economies

is countercyclical: advanced economies outperform emerging markets when capital flows recede.

This is consistent with the mechanism in the model: retrenchment is more active in rich countries,

and their risky assets weather aggregate capital flight events better. In the data, global sales of

10% of foreign assets are associated with a 1.6pp excess return on equities in advanced economies

compared to emerging markets. In the model, the same aggregate foreign asset sales generate 0.8pp

of excess returns. Although the model cannot capture all empirical variation due to differences

in institutions, asset characteristics, and financial development, it reproduces a significant portion

of the variation with wealth heterogeneity alone, suggesting that asset demand elasticities are an

important determinant of the global response to financial shocks.

1.1 Related literature

The most closely related paper is Caballero and Simsek (2020). They show how retrenchment

stabilizes domestic asset markets in a model where capital flight is driven by idiosyncratic shocks.

Liquidity needs trigger fire sales by foreign investors. Local investors use their foreign holdings to

pick up the unwanted asset and support its price. This mechanism is also present in Jeanne and

Sandri (2023). I build a dynamic version of this model in the style of Brunnermeier and Sannikov

(2014) with global intermediaries, aggregate shocks, and endogenous differences wealth, focusing

on the distributional consequences of aggregate capital flight.

My model shares the focus on cross-sections of advanced and emerging economies with closely

related papers by Morelli, Ottonello, and Perez (2022) and Bai, Kehoe, and Perri (2019). Morelli,

Ottonello, and Perez (2022) model a global intermediary invests in emerging markets. They

account for the feedback from the cross-section of returns to the intermediary’s net worth and find

that shocks to the intermediary’s balance sheet are an important driver of borrowing costs around

the world. Bai, Kehoe, and Perri (2019) use a similar model to measure the relative importance of

global and local shocks in explaining the cross-section of sovereign spreads. My main contribution

relative to these papers is adding gross capital flows that are jointly determined with asset prices

as the primary mechanism behind heterogeneous responses to global shocks.
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Davis and Van Wincoop (2022) construct a multicountry model to generate gross flows after a

shock to global risk aversion and show the importance of within-country heterogeneity. Davis and

Van Wincoop (2023) additionally show that symmetric shocks to identical countries can generate

positive co-movement between gross flows in and out as long as more risk-tolerant investors invest

more abroad. I focus instead on the distributional consequences of global shocks in intermediated

markets with endogenous heterogeneity between ex-ante identical countries.

Dahlquist, Heyerdahl-Larsen, Pavlova, and Pénasse (2022) build a multicountry model with

time-varying appetites for risk coming from deep habits. They show how an adverse output shock

in a large country leads to an appreciation of its currency and an increase in its wealth share.

I arrive at regressive redistribution in downturns through capital flows. In relative terms, rich

countries become richer because they easily replace foreign demand for their assets. In absolute

terms, they become richer because the shock to risk-taking capacity decreases the interest rate,

while risk premia are held down by retrenchment, and asset prices rise.

Farboodi and Kondor (2022) study heterogeneous boom-buts dynamics with imperfect infor-

mation about asset quality. In their model, shocks determine what investors learn about firms.

In bad times, they flee from emerging markets to advanced economies, inducing a recession in the

former and stabilizing output in the latter. Fu (2023) models joint determination of capital flows

and exchange rates, showing that currency betas are lower in countries where domestic investors

have a higher propensity to retrench than foreign ones. The resulting link between retrenchment

and cyclicality of returns is similar to that in my model. Zhou (2023) shows how exposure of

assets to investor-specific shocks depends on the willingness of other market participants to absorb

additional supply, focusing on the composition of the foreign investor base. A similar mechanism

involving domestic investors is at the heart of my model.

There is a large literature on heterogeneous responses to global shocks that focuses on the US

and the rest of the world, endowing the US with intrinsic advantages such as less tight leverage

constraints, non-pecuniary benefits attached to its bonds, and higher risk tolerance. This literature

includes, among others, Bruno and Shin (2015), Maggiori (2017), Farhi and Maggiori (2018), Jiang,

Krishnamurthy, and Lustig (2020), Kekre and Lenel (2021), Sauzet (2023), Devereux, Engel, and

Wu (2023), and Jiang (2024). In Jiang, Krishnamurthy, and Lustig (2020) and Kekre and Lenel

(2021), the dollar carries a convenience yield. Kekre and Lenel (2021) study flight to safety caused

by a shock to this convenience yield in a model with nominal frictions and investment.

A large empirical literature explores global drivers of international capital flows and asset

prices. Miranda-Agrippino and Rey (2022) provide a comprehensive review. The dominant global

factor in a large panel of risky asset prices has been extracted by Miranda-Agrippino, Nenova, and

Rey (2020) and more recently updated by Miranda-Agrippino and Rey (2020). Similarly strong

co-movement has been documented for capital flows. Forbes and Warnock (2012) and Forbes

and Warnock (2021) show co-movement between gross flows. Barrot and Serven (2018) identify
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common components in gross flows and show that these common components are strongly related

to aggregate variables such as VIX, US dollar exchange rate, and interest rates.

Part of this literature deals with heterogeneity between advanced economies and emerging

markets. Barrot and Serven (2018) and Cerutti, Claessens, and Puy (2019) show that flows in

advanced economies are more responsive to common factors. This fact is at the heart of the model,

which is built to generate more elastic asset markets in rich countries.

The literature studying distributions of returns and flows includes Chari, Stedman, and Lund-

blad (2020), Gelos, Gornicka, Koepke, Sahay, and Sgherri (2022), and Eguren Martin, O’Neill,

Sokol, and von dem Berge (2021). Kalemli-Özcan (2019) and Bräuning and Ivashina (2020) show

that US monetary policy spillovers have a more pronounced effect on emerging markets. Chari,

Stedman, and Lundblad (2020) show the outsized effect of risk-off episodes on the worst realiza-

tions, the left tail. This is the response to a shock to risk-taking capacity in my model: the left

tail of returns shifts significantly further, while the average stays very close to normal times.

The paper is organized as follows. Section 2 lays out the model and defines equilibrium.

Section 3 characterizes equilibrium. Section 4 provides analytical results on the steady state and

the shock to risk-taking capacity. Section 5 describes the calibration and estimation procedure.

Section 6 lays out the empirical results.

2 Model

Time is continuous and runs forever. There is no aggregate uncertainty. The world is a unit

measure of countries indexed by i ∈ [0, 1] and a large special country populated by intermediaries.

Each country has a Lucas tree in fixed unit supply. Output is homogeneous across countries.

Cumulative output of i’s tree up to time t is denoted by yit, and flow output is dyit = νtdt+σdZit.

Expected output νt is common to all countries and evolves deterministically. The volatility σ is

constant, and the random increments dZit are standard Brownian, independent across countries.

Agents from these countries only invest in their domestic trees and bonds issued by global

intermediaries. Bonds are riskless and short-term, paying interest rtdt. This is the risk-free rate

of the economy. The price pit of i’s tree is an endogenous stochastic process. The instantaneous

excess return on trees is the dividend yield and capital gains over and above the risk-free rate:

dRit =
dyit + dpit

pit
− rtdt

Each country i houses a continuum of identical agents. Denote the wealth of the representative

agent in i by wit and the aggregate wealth of her country by wit. These processes will coincide in

equilibrium, but agents take wit as given.

For stationarity, the model includes a version of perpetual youth with additional wealth-sharing
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across countries. Agents in countries i ∈ [0, 1] die with a Poisson intensity λ. In this event, the

dying agent’s wealth is sent to the special country, and she is replaced with a newborn. All

survivors transfer a share of their wealth to the newborn to make her net worth the same as her

predecessor’s. Similarly, agents in the special country die with a Poisson intensity λ̂, and their

wealth is sent uniformly to regular countries i ∈ [0, 1], where it is shared between local residents

in proportion to their net worth. In country i, the evolution of individual agent’s wealth wit is

dwit = (rtwit − cit)dt+ θitwitdRit −
wit

wit

· λwitdt+
wit

wit

· λ̂ŵtdt (1)

Here cit is consumption. The second term represents returns on the tree, where θit is its portfolio

share. The third and fourth terms reflect the perpetual youth adjustment. The third one is

the transfers to newborns: the total flow of the dying agents’ wealth is λwit, and everyone in i

compensates the newborns according to her own wealth share wit/wit. The fourth term is the

inflow of wealth from the dying agents in the special country: ŵt is its aggregate wealth, λ̂ is the

death rate, and all arriving wealth is again shared in proportion to the net worth of local residents.

The sequence problem of the agent in the country i is

max
{cis,θis}s≥t

Et

[
ρ

∫ ∞

t

eρ(t−s) log(cis)ds

]
subject to equation (1) and wit ≥ 0. Since everyone in i is the same, in equilibrium wit = wit, and

dwit = (rtwit − cit)dt+ θitwitdRit + (λ̂ŵt − λwit)dt

I next describe the special country. It is special for two reasons. First, its asset supply is

different. Second, its local agents are global intermediaries. I explain these two properties below,

using notation with hats to separate this country from regular ones.

In contrast to regular countries, the special country is large, with a finite measure q̂ of trees

that are pooled together in a fund. The random components of their yields wash out, so the total

output over dt in the special country is q̂νtdt. These trees can only be traded as one, in a bundle

with equal weights. I refer to this fund as the special country’s tree for convenience. Its price is

p̂t, and the excess return is dR̂t = (νdt+ dp̂t)/p̂t − rtdt.

The wealth ŵt of the local representative agent, who is also the global intermediary, is its

holdings of trees less bonds outstanding. It evolves as

dŵt = (rtŵt − ĉt)dt+

∫
[θ̂itŵtdRit]di+ θ̂tŵtdR̂t +

ŵt

ŵt

· λwtdt−
ŵt

ŵt

· λ̂ŵtdt (2)

Here ĉt is consumption. The second and third terms are excess returns on trees in all countries with

portfolio weights {θ̂it} on regular ones and θ̂t on the special country. The last two terms mirror the
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perpetual youth terms in equation (1): there is an inflow λwtdt, where wt is the aggregate wealth

of all regular countries, and an outflow λ̂ŵtdt, where ŵt is the special country’s aggregate wealth.

The intermediary’s risk-taking capacity is limited. It faces a value-at-risk constraint:∫
V[θ̂itdRit]di ≤ γt

∫
E[θ̂itdRit]di (3)

This constraint aggregates idiosyncratic uncertainty over the intermediary’s returns in all countries

and bounds it by a multiple of expected profits on these assets. The parameter γt is key: it

determines the intermediary’s ability to hold country-specific risk. With γt = ∞, the intermediary

could in principle take advantage of access to a continuum of uncorrelated assets and fully insure

other agents, absorbing all idiosyncratic risk. A finite γt leads to non-trivial portfolios, and negative

shocks to γt trigger capital flight events. The problem of the intermediary is

max
{ĉs,θ̂s}s≥t

Et

[
ρ

∫ ∞

t

eρ̂(s−t) log(ĉs)ds

]
subject to ŵt ≥ 0, equation (2), and equation (3). Since ŵt = ŵt in equilibrium, wealth evolves as

dŵt = (rtŵt − ĉt)dt+

∫
[θ̂itŵtdRit]di+ θ̂tŵtdR̂t + (λwt − λ̂ŵt)dt

This completes the description of the environment. To define equilibrium, one needs notation

for tree and bond holdings instead of positions {θit, θ̂it, θ̂t}. Denote bond holdings of country i by

bit and their holdings of domestic trees by hit. By construction, i’s wealth is wit = bit + pithit, and

the risky share θit determines the split: θitwit = pithit and (1− θit)wit = bit.

To track the intermediary’s holdings of trees and bond issuance, let b̂t be the total bonds

issued, let {ĥit} be its holdings of trees in regular countries, and let ĥt be its holdings of the special

country’s tree. By construction,

ŵt =

∫
pitĥitdi+ p̂tĥt − b̂t

b̂t =

(∫
θ̂itdi+ θ̂t − 1

)
ŵt

Portfolio weights {θ̂it} satisfy θ̂itŵt = pitĥit for all i, and θ̂t satisfies θ̂tŵt = p̂tĥt. Figure 1 uses this

notation for a crude example of balance sheets. I can now define equilibrium.

Definition 1. Given the processes {νt, γt, {Zit}}t≥0 and the associated filtrations, an equilibrium

is a collection of adapted price processes {rt, {pit}, p̂t}t≥0, wealth processes {{wit}, {wit}, ŵt, ŵt}t≥0,

consumption processes {{cit}, ĉt}t≥0, and processes for asset holdings {{hit}, {ĥit}, {bit}, b̂t, ĥt}t≥0

such that all agents optimize and
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• aggregate wealth process agrees with individual wealth: wit = wit for all i and ŵt = ŵt,

• bond market clears:

∫
bitdi = b̂t,

• markets for regular country trees clear: hit + ĥit = 1 for all i ∈ [0, 1],

• market for the special country tree clears: ĥt = q̂,

• market for consumption goods clears:

∫
citdi+ ĉt = (1 + q̂)ν.

Markets for trees clear country by country, and the market for the intermediary’s bonds clears

globally. The market for consumption goods clears automatically as soon as other markets do.

assets

bit

pithit

liabilities

wit

agent in country i

assets∫
pitĥitdi

p̂tĥt

liabilities

b̂t

ŵt

global intermediary

Figure 1: Schematic balance sheets of agents from a country i and the global intermediary.

3 Equilibrium

This section characterizes equilibrium. The main object of interest is asset prices pit. Solving for

them requires characterizing equilibrium excess returns dRit and using market clearing conditions.

There is only idiosyncratic uncertainty in this economy. Only agents from country i and the

intermediary have access to country i’s tree, so prices and excess returns dRit only load on dZit:

dpit = µp
itdt+ σp

itdZit

dRit = µR
itdt+ σR

itdZit

These equations define the drift and volatility of prices and excess returns (µp
it, µ

R
it , σ

p
it, σ

R
it ). These

are equilibrium objects related to each other by

µR
it =

νt + µp
it

pit
− rt

σR
it =

σ + σp
it

pit
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As usual, the volatility of returns has an exogenous and an endogenous component.

The first result that helps characterize equilibrium concerns consumption and portfolio choice.

Lemma 1. Suppose σR
it ̸= 0 for all countries. Agents consume a constant fraction of their

wealth, cit = ρwit and ĉ = ρŵt, and choose mean-variance portfolios:

θit =
µR
it

(σR
it )

2
and θ̂it = γt

µR
it

(σR
it )

2

The condition that σR
it ̸= 0 rules out pathological equilibria with dividend shocks exactly

offsetting capital gains on all sample paths. I describe these equilibria in the proof. The results for

the regular countries are not surprising given the log utility. The non-trivial part of this lemma

is the intermediary’s consumption and portfolio choice. It turns out that adding the value-at-risk

constraint to log utility does not break the constant-share consumption rule, and the only change

in portfolio choice is the new effective risk-tolerance coefficient γt.

Two things about the value-at-risk constraint are especially convenient. First, it allows for time-

varying risk aversion while keeping tractability. Other ways to achieve time-varying risk aversion

include, for example, recursive preferences of Duffie and Epstein (1992) or habits of Campbell and

Cochrane (1999). Recursive preferences create hedging motives in portfolio choice, making portfo-

lios less tractable and introducing additional state variables that solve partial differential equations.

Habits create additional state variables as well, increasing the number of endogenous objects to

solve for. The value-at-risk constraint instead introduces an exogenous state variable γt and keeps

portfolios tractable and easy to aggregate. Oskolkov (2024) describes the general treatment of

value-at-risk constraints and provides a foundation through a version of robust preferences.

Second, the value-at-risk constraint generates non-trivial portfolios in a world without aggregate

uncertainty and with perfectly diversifiable shocks. The intermediary has access to a continuum

of assets. Unlike, for example, in preferred habitat models like Vayanos and Vila (2021), they

provide uncorrelated returns. Despite that, the intermediary still faces a risk-return tradeoff at

the level of individual assets. This is due to the functional form of the constraint that includes the

sum of idiosyncratic variances in all countries instead of the total statistical variance of the entire

portfolio, which is zero by the law of large numbers. As a result, the model features country-specific

idiosyncratic risk premia in a potentially fully diversifiable world.

A useful feature of portfolio shares θit and θ̂it in Lemma 1 is that they are proportional to each

other, simplifying aggregation in each country’s market. The following proposition describes asset

holdings and the main pricing equation for each i.

Proposition 1. In each country i, the local agent’s tree holdings are

hit =
wit

wit + γtŵt

and ĥit =
γtŵt

wit + γtŵt
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The asset pricing equation for i’s tree is

µp
it + νt − rtpit︸ ︷︷ ︸
risk premium

= (σp
it + σ)2︸ ︷︷ ︸

quantity of risk

· 1

γtŵt + wit

(4)

There are two participants in each country’s market, and they split the tree according to their

wealth shares and effective risk tolerance, which equals one for local agents due to log utility and

γt for the intermediary. Domestic ownership of the tree is monotone in local wealth, converging to

one in extremely rich countries (wit −→ ∞) and zero in extremely poor ones (wit −→ 0).

Equation (4) is the main asset pricing equation in the model. It shows that the price of risk

in every country is the weighted sum of the wealth in its market, where risk tolerance coefficients

are the weights. The price of risk can rise due to local factors, such as negative output shocks

that make the local agent poorer. It can also rise due to global factors: a negative shock to the

intermediary’s wealth or risk-taking capacity γt. These global factors are common to all countries,

inducing synchronous movements in risk premia and ultimately asset prices.

A useful benchmark is the γt = ∞. In this case, the intermediary can take advantage of full

diversification, with country-specific risk washing out. Equation (4) shows that expected excess

returns µR
it have to be zero in equilibirum. Otherwise, the intermediary would demand assets in

unbounded quantities. Since µR
it = 0, local agents are unwilling to hold their trees because they

cannot take advantage of the continuum of foreign assets, and local shocks for them continue to

be aggregate. As a result, the intermediary holds the entire global supply of risky assets: ĥit = 1

for all i. Local agents are not exposed to risk and all have the same wealth in the long run.

With a finite γt, the intermediary demands a positive risk premium, which induces local agents

to participate as well. A non-degenerate wealth distribution emerges in equilibrium due to exposure

to shocks. This distribution is a global state variable that determines the interest rate and asset

prices. Characterizing them requires taking equation (4) one step further, which is what I do next.

3.1 Asset prices

I will characterize asset prices and other quantities as functions of two variables: local wealth and

time. This is possible because aggregate dynamics are deterministic, and the evolution of aggregate

states, including the wealth distribution G(w, t), can be indexed by time t only. Domestic wealth

w replaces the index i since the local dynamics of two countries with the same wealth are identical.

Define the drift and volatility of local wealth w and tree prices p(w, t) by

dw = µw(w, t)dt+ σw(w, t)dZ

dp(w, t) = µp(w, t)dt+ σp(w, t)dZ
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The density g(w, t) associated with the distribution G(w, t) solves a Kolmogorov forward equation

∂gt(w, t) = −∂w(µw(w, t)g(w, t)) +
1

2
∂2
ww(σw(w, t)

2g(w, t)) (5)

subject to an initial condition on g(w, 0). The corresponding Kolmogorov backward equation is

usually reserved for the agents’ value functions. In my model, log utility makes solving for them

redundant, and the backward equation instead applies to asset prices. The following proposition

characterizes p(w, t) and r(t) for given exogenous processes {γ(t), ν(t)}.

Proposition 2. Asset prices p(w, t) and the interest rate r(t) solve the following equations:

r(t)p(w, t)− ∂tp(w, t) = ν(t) −
∣∣∣∣σ2π(w, t)︸ ︷︷ ︸

risk adjustment

+

∣∣∣∣µw(w, t)∂wp(w, t) +
σw(w, t)

2

2
∂2
wwp(w, t)︸ ︷︷ ︸

growth term

(6)

r(t) = ρ+
ν ′(t)

ν(t)
− ρσ2

(1 + q̂)ν(t)

∫
π(w, t)dG(w, t)

Here the drift and variance of wealth are

µw(w, t) = (r(t)− ρ− λ)w + λ̂ŵ(t) +
σw(w, t)

2

w

σw(w, t) =
σw

w + γ(t)ŵ(t) − w∂wp(w, t)︸ ︷︷ ︸
amplification

The risk compensation π(w, t) is

π(w, t) =
w + γ(t)ŵ(t)

[w + γ(t)ŵ(t)− w∂wp(w, t)]2

The backward equation for prices follows from applying Itô’s lemma to equation (4). There are

two additional terms relative to fair-value pricing r(t)p(w, t) − ∂tp(w, t) = ν(t). Risk adjustment

reflects the market compensation for country-specific shocks. The growth term reflects the fact

that prices are a function of wealth, so its drift introduces a drift in p(w, t). Since prices are a

non-linear function, the volatility of wealth introduces additional drift. The interest rate is related

to the subjective discount rate and the growth rate of aggregate consumption, which is equal to

the total output. The last term in the expression for the interest rate reflects uninsured risk as

given by the average risk adjustment across all countries.

Wealth volatility σw(w, t) originates in the dividend risk and is proportional to σ and wealth w.

The denominator has two terms. The first is the total market wealth w + γ(t)ŵ(t), which reflects

risk sharing between the two participants. The second term is −w∂wp(w, t), which accounts for

endogenous risk amplification: dividend shocks hit wealth, which translates to prices and feeds
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back into wealth through them. The drift in wealth has a consumption-savings part (r(t)−ρ)w, the

perpetual youth part λ̂ŵ(t)− λw, and the last term is the risk premium that investors receive for

exposing their wealth to the trees. The risk compensation π(w, t) inherits the term −w∂wp(w, t)

from the wealth volatility because local wealth w is a key variable driving asset returns. Without

endogenous volatility, and hence this endogenous part in the denominator, π(w, t) would simply

be equal to (γ(t)ŵ(t) + w)−1, the partial equilibrium price of risk as seen in equation (4).

Finally, the special country’s wealth ŵ(t) is an endogenous aggregate state. This is the last

piece of equilibrium required to solve for asset prices. Following from consumption market clearing

and the fact that aggregate consumption is a share ρ of aggregate output,

ŵ(t) =
(1 + q̂)ν(t)

ρ
−
∫

wdG(w, t)

The price of the special country’s tree satisfies the fair value pricing equation r(t)p̂(t)− p̂′(t) = ν(t)

because there is no associated risk.

I will study the paths of aggregate states {γ(t), ν(t)} that lead the economy to converge to a

global steady state. This steady state provides terminal conditions for equation (6). It is also an

illustrative focal point that exposes some properties of the economy that I describe below.

3.2 Steady state

In a steady state, all equations from Proposition 2 continue to hold for the time-independent

version of all functions such as p(w) and g(w), and aggregates such as r and ŵ. Idiosyncratic

shocks continue to hit regular countries and move them around the wealth distribution. A good

sequence of dividends can take a country to the right tail, and a bad sequence can drag it back to

the middle or to the left tail.

(a) Asset prices and the fair value (b) Holdings and risky shares of local agents

Figure 2: Panel (a): asset prices p(w) and the fair value limit. Panel (b): tree holdings of local
agents h(w) and the risky portfolio shares θ(w).
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Figure 2 shows asset prices p(w), domestic tree holdings h(w), and portfolio shares θ(w) al-

located to the trees by local agents. The steady-state wealth density g(w) is in the background.

Prices and the wealth density solve the following coupled system of ordinary differential equations:

rp(w) = ν − σ2π(w) + µw(w)p
′(w) +

σw(w)
2

2
p′′(ww) (7)

0 = (µw(w)g(w))
′ − 1

2
(σw(w)g(w))

′′ (8)

The interest rate is

r = ρ− ρσ2

(1 + q̂)ν

∫
π(x)dG(x)

The coefficients in the coupled system of equation (7) and equation (8) are

π(w) =
w + γŵ

[w + γŵ − wp′(w)]2

σw(w) =
σw

w + γŵ − wp′(w)

µw(w) = (r − ρ− λ)w + λ̂ŵ +
σw(w)

2

w

Finally, the special country’s wealth is

ŵ =
(1 + q̂)ν

ρ
−
∫

xdG(x)

Despite the simplicity of the setup, solving the coupled system of equation (7) and equation (8) is

not straightforward. Endogenous risk makes the differential equation (7) non-linear. In practice,

it can be solved iteratively: take a conjecture for p(w), g(w), compute the risk compensation π(w),

and use it to calculate the interest rate r and the drift and volatility of wealth µw(w) and σw(w).

Then, plug them in equation (7) and solve for the updated p(w) as if it were a linear ODE. Finally,

update the conjecture for g(w) by solving the linear Kolmogorov forward equation (8). The pair

p(w) and g(w) are a fixed point of this operation.

The right panel of Figure 2 shows local tree holdings and risky portfolio shares. The closed-

form solution for h(w) = w/(w + γŵ) comes from Proposition 1, and the risky share equals

θ(w) = p(w)h(w)/w = p(w)/(w + γŵ). Section 5 describes the parameters used for the figure.

The special country enjoys its central position in the global financial system. The intermediary

takes positions in trees all around the wealth distribution. With access to a continuum of uncorre-

lated returns, it earns excess returns with certainty. Its liabilities, on the contrary, are low-yielding

risk-free bonds. This leads to “exorbitant privilege”: profits allow the special country to sustain

perpetual trade deficits even if it runs a net debt to the rest of the world. As shown, for example,
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by Gourinchas and Rey (2022), this corresponds to the empirical description of the US, whose

external liabilities are dominated by safe assets, and external assets are mostly risky.

The expression for the special country’s trade deficit follows from its budget constraint and the

equilibrium tree holdings, setting the perpetual youth terms to zero for simplicity.

Corollary 1. Suppose λ = λ̂ = 0. The special country’s trade deficit is

ĉ− q̂ν = r ·
(∫

p(w)ĥ(w)dG(w)− b̂

)
︸ ︷︷ ︸

net foreign assets

+

∫
σ2π(w)ĥ(w)dG(w)︸ ︷︷ ︸
risk compensation

= r ·
(∫

p(w)ĥ(w)dG(w)− b̂

)
+

∫
(ν − rp(w))ĥ(w)dG(w)︸ ︷︷ ︸

risk discount

+

∫
µp(w)ĥ(w)dG(w)︸ ︷︷ ︸

trading profits

The trade deficit ĉ − q̂ν can be funded through interest payments on the net foreign asset

position and the risk compensation. In the data, the US has negative net foreign assets as it runs

trade deficits, for which the risk compensation term must be positive. This term can be further

decomposed into two sources. First, the risk discount reflects the fact that trees are priced at

less than their fair value. The intermediary takes advantage of that, borrowing at r and buying

claims to a stream of dividends ν at a price p(w) < ν/r. Second, trading profits arise because

countries move around the steady-state wealth distribution due to idiosyncratic shocks. This churn

generates steady-state capital flows as the intermediary trades trees with local agents. Its trading

strategy takes advantage of the drift in prices. The average drift in prices is zero in the steady

state, but the intermediary takes positions ĥ(w) that skew towards growing countries. As shocks

reshuffle the wealth distribution, these countries become richer, their assets appreciate, and the

intermediary sells them to buy cheaper assets from countries that arrive to the left tail.

The trading profits term is also equal to the financial account surplus of the special country,

while the trade deficit and factor payments (interest paid on debt less dividends received) combine

into the current account deficit. The fact that trading profits are positive implies that the special

country can run perpetual current account deficits as well as trade deficits.

In addition to the special country, it is possible to characterize the dynamics in the right tail of

the wealth distribution. To do that, I choose equilibria with a finite limit of p(w) as w −→ ∞ and

p̂ = ν/r, ruling out bubbles in all assets. For these equilibria, Proposition 2 implies the following.

Corollary 2. Suppose p(w) has a finite limit as w −→ ∞. Then,

lim
w−→∞

σw(w) = σ

lim
w−→∞

µw(w)

w
= r − ρ− λ < 0

lim
w−→∞

p(w) = p̂ = ν/r > ν/ρ
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As a country becomes rich, the volatility of its wealth converges to a constant. Riskiness

does not scale with wealth, and rich countries enjoy safe payoffs and consumption in relative

terms: σw(w)/w −→ 0. The trend of their net worth goes negative, as they simply consume their

accumulated wealth and drift back to the middle of the wealth distribution. Their asset prices

converge to the safe asset benchmark. As a country grows richer, it increasingly looks like the

special country, except it cannot get stuck in the right tail forever.

Importantly, as the global economy still contains uninsured idiosyncratic risk, the interest rate

is depressed relative to the subjective discount rate: r < ρ. Safe assets are overvalued relative

to fundamental cash flows: p̂ = ν/r > ν/ρ. It is intuitive that this should apply to the special

country that has no inherent risk. Corollary 2 shows that rich regular countries become so safe

that they also inherit this safety premium.

Characterizing asset prices in general is challenging because of the non-linearity of the key

coupled system. However, it is possible to obtain analytical insights under a small-shock approxi-

mation. The next section describes asset prices under this approximation both in the steady state

and following shocks to the global risk-taking capacity that trigger capital flight events.

4 Analytical Results

I consider the limit of small idiosyncratic shocks: σ −→ 0. This approximation generates closed-

form expressions for risk premia and clarifies the magnitudes of the different moving parts in

equilibrium. Unsurprisingly, risk premia are comparable to the variance of idiosyncratic shocks σ2.

Less intuitively, it turns out that endogenous risk and wealth amplification effects only contribute

terms of order O(σ4) to risk premia and asset prices. This has important implications for aggre-

gate shocks and heterogeneity. Shifts in the wealth distribution created by aggregate shocks do

affect risk premia, but these effects turn out to be qualitatively smaller than the direct impact of

changing preferences for risk or dividends. I show that accounting for this difference in magnitudes

substantially simplifies characterizing shocks to the intermediary’s risk-taking capacity γ(t). Key

impulse responses are available in closed form.

Start with the steady state. Define a price of risk function π(w):

π(w) ≡ 1

w + γŵ

Let λ = λσ2 and λ̂ = λ̂σ2 and define also a pair of functions m(·) and s(·) as

m(w) = w

(
π(w)2 − ρ

(1 + q̂)ν

∫
π(x)dG(x)− λ

)
+ λ̂ŵ

s(w) = wπ(w)
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Here G(·) denotes the distribution with an associated density g(·) that solves

(m(w)g(w))′ =
1

2
(s(x)2g(w))′′

Finally, the special country’s wealth ŵ in the expression for π(·) is

ŵ =
(1 + q̂)ν

ρ
−
∫

xdG(x)

With these ingredients, the following proposition characterizes the limiting steady state.

Proposition 3. In the limit σ −→ 0, the interest rate and asset prices are

r = ρ− ρσ2

(1 + q̂)ν

∫
π(x)dG(x) +O(σ4)

p̂ =
ν

ρ
+

σ2

(1 + q̂)ρ

∫
π(x)dG(x) +O(σ4)

p(w) =
ν

ρ
+

σ2

ρ
·
[

1

1 + q̂

∫
π(x)dG(x)− π(w)

]
+O(σ4)

The second-order term in p(w) is monotone in w, with p(0) < ν/ρ and p(w) > ν/ρ when w −→ ∞.

The functions π(·), g(·), m(·), and s(·) approximate the risk compensation, the steady-state wealth

density, and the drift and volatility of wealth:

π(w) = π(w) +O(σ2)

g(w) = g(w) +O(σ2)

µw(w) = σ2m(w) +O(σ4)

σw(w) = σs(w) +O(σ3)

The first important property of the small-σ approximation is that the risk compensation π(·)
is missing the amplification term −wp′(w) in the denominator. This amplification channel reflects

the equilibrium feedback loop from dividend shocks to wealth to prices. It turns out that this

channel is of the next order of importance compared to the total wealth-weighted risk tolerance

w+γŵ in the market. The “partial equilibrium” price of risk (w+γŵ)−1 is a good approximation

for the general equilibrium risk compensation.

This fact simplifies computations. The strength of precautionary motives that depress the

interest rate relative to the subjective discount rate is the average price of risk. Risky asset prices

have an especially revealing functional form too. On the one hand, country-specific price of risk

π(w) depresses p(w) relative to the fundamental cash flows ν/ρ. On the other hand, because of

precautionary motives that lower the interest rate, all asset prices are inflated by the average price
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(a) Risk compensation π(w) and π(w) (b) Wealth densities g(w) and g(w)

(c) Wealth drift µw(w) and σ2m(w) (d) Wealth volatility σw(w) and σs(w)

Figure 3: Exact solutions and second-order approximations from Proposition 3.

of risk. Since π(w) −→ 0 as w −→ ∞, the second effect dominates for rich countries. Their risky

assets trade at a premium relative to the fundamentals. At the other end, when w −→ 0, the first

effect dominates: p(0) < ν/ρ. This follows from the monotonicity of π(·). Finally, the special

country’s tree does not have an associated price of risk, which means it is inflated relative to ν/ρ

by exactly as much as the interest rate is depressed relative to ρ.

All approximation errors are proportional to σ2 instead of σ. This fact is due to symmetry:

replacing σ with −σ should not change anything in the economy because the underlying shocks

are Brownian motions. Figure 3 demonstrates the quality of the approximation by plotting the

exact solutions for {π(·), g(·), µw(·), σw(·)} and the corresponding approximations for my preferred

calibration described in Section 5.

4.1 Shocks to risk-taking capacity

I now describe a negative shock that hits the intermediary’s risk-taking capacity γ(t). This shock

operates through the value-at-risk constraint and makes it more costly for the intermediary to

hold country-specific risk on its balance sheet. The shock does not discriminate between countries,

inducing the intermediary to sell the same proportion of its position in all countries. The impact

on countries, however, is unequal for two reasons. First, since the intermediary holds a larger

share of the market in poor countries, the resulting sudden stop targets the left tail of the wealth
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distribution more. Second, the response of local agents depends on their wealth. In rich countries,

local agents have accumulated large stocks of foreign assets, and they can buy large quantities of

domestic assets without a sharp rise in expected excess returns. In poor countries, local agents

cannot absorb much more of their domestic risk. Expected excess returns have to rise instead,

convincing the intermediary to sell less in equilibrium. Adjustment in these markets happens

through prices rather than quantities, and risk premia rise sharply in the left tail. Markets behave

more elastically in countries with large stocks of foreign assets.

On top of these responses across individual countries, the global risk-free rate changes in general

equilibrium. The price of risk rises because aggregate risk tolerance falls in all markets, so uninsured

idiosyncratic risk depresses the risk-free rate more than before. With the global interest rate

falling, asset prices are inflated relative to the steady state. This effect counteracts the rise in

risk premia, and it dominates in rich countries, where domestic agents’ retrenchment keeps the

risk premia from rising too much. As a result, risky asset prices in rich countries rise after a

negative shock to global risk-taking capacity. These assets behave like colloquial “safe” assets

because they have a countercyclical component in returns. Importantly, their safe asset status

is endogenous: the physical properties of dividends and asset supply are fixed across countries.

There are no fundamental differences in the cross-section, just the stock of wealth accumulated

before the shock.

To show this analytically, I again take advantage of the second-order approximation around

σ = 0 and additionally linearize the model with respect to aggregate shocks. The benefit of this

approach is that endogenous risk is not among the second-order terms. This pushes the impact

of initial wealth revaluation into the fourth order of σ: the fact that countries’ net worth is

immediately hit by the change in γ(t) does not feed into their asset prices. This leaves asset prices

affected by two things only: the change in the price of risk on the country’s local market and the

change in the global risk-free rate.

Formally, consider a single unanticipated shock ∆γ(t) = δe−µγt. I will use ∆γ(t) < 0, a negative

shock, as the running example. The economy approaches t = 0 resting at the steady state. The

following proposition characterizes the deviations ∆p(w, t), ∆p̂(t), and ∆r(t) from the steady-state

values p(w), p̂, and r.

Proposition 4. The ∆γ(t)-first-order deviations of the interest rate and asset prices are

∆r(t) = ∆γ(t)σ2 · ρŵ

(1 + q̂)ν

∫
π(x)2dG(x) +O(σ4)

∆p̂(t) = −∆γ(t)σ2 · ŵ

ρ+ µγ

· 1

1 + q̂

∫
π(x)2dG(x) +O(σ4)

∆p(w, t) = −∆γ(t)σ2 · ŵ

ρ+ µγ

[
1

1 + q̂

∫
π(x)2dG(x)− π(w)2

]
+O(σ4)
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The function ∆p(w, t) is monotone in w, and it has the opposite signs at w = 0 and w −→ ∞ for

all t ≥ 0. The change in the risk compensation is

∆π(w, t) = −∆γ(t)ŵπ(w)2 +O(σ2)

The technical significance of this result is that the main components of the interest rate and

asset price deviations from the steady state only depend on the current level of ∆γ(t). Typically,

they depend on the whole history of the aggregate shock, which leads to expressions like

∆p(w, t) =

∫ ∞

0

J(w, t, s)∆γ(t− s)η(ds)

Here J(·) is a sequence-space Jacobian that linearly maps the whole sequence {∆γ(s)}s=∞
s=−∞ to the

sequence of first-order deviations {∆p(·, t)}t≥0. Integration has to be done with a measure η(·)
to accommodate the fact that ∆γ(t) may impact ∆p(w, t) discretely, in addition to continuous

impact of {∆γ(s)}s<t. The reason J(w, t, s) typically depends on s < t is that aggregate shocks

move aggregate states, such as the wealth distribution, and these effects accumulate over [0, t],

adding to the direct effect of ∆γ(t).1

Aggregate states still move in response to ∆γ(t) in my model, but Proposition 4 shows that, up

to the fourth order of σ, these accumulating effects do not show up in individual asset prices and

the interest rate. The Jacobian J(w, t, s) is simply J(w), and for one-dimensional variables like

the global risk-free rate r(t) or the special country’s tree price p̂(t), the corresponding Jacobian is

a scalar. All that is needed to compute the Jacobians are the steady-state wealth distribution and

price of risk. Besides providing analytical insights, this approximation makes estimating the model

with GMM particularly easy, as model-generated moments have closed-form expressions and only

depend on a few steady-state objects.

The analytical content of Proposition 4 clarifies what happens to the price of risk and asset

prices across the wealth distribution. The change in the risk compensation is zeroth-order in σ. The

intermediary’s risk tolerance affects it directly. This impacts the global interest rate: uninsured

idiosyncratic risk generates more precautionary motives if ∆γ(t) < 0, and the interest rate falls.

The price of the special country’s tree rises, reacting to a lower discount rate.

Prices of risky assets in regular countries are subject to two effects: they fall due to a rising

local price of risk, but the global increase in the price of risk depresses the risk-free rate, and this

pushes all asset prices up. The left panel on Figure 4 plots the change in p(w) on impact as a

function of the country’s wealth before the shock, along with the two components.

Because of monotonicity in π(·), the first effect surely dominates around w = 0, and risky asset

prices fall on impact in poor countries. The second effect comes out on top in rich countries, where

1Auclert, Bardóczy, Rognlie, and Straub (2021) provide a detailed explanation.
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π(w)2 −→ 0. Steady-state risk premia are small in those countries due to large domestic investors

saturated with safe assets: the market does not require a high premium to hold an additional unit

of risk. The same large domestic investors pour in when there is capital flight, replacing foreign

investors without asking for much higher expected excess returns.

To see this more clearly, consider the following first-order quantity: the fraction of its position

the intermediary tries to sell in a given country at constant prices. This is simply how much γ(t)

falls: ∆PE(w) = −∆γ(t)/γ. On the other hand, the general equilibrium change in foreign holdings

of the country’s tree as a share of the foreign-held stock is

∆GE(w) =
∆ĥ(w, t)

ĥ(w)
= −∆γ(t)

γ
· w

w + γŵ

This is how much domestic investors actually buy from the intermediary in equilibrium. This

function converges to zero in poor countries, since local investors have no capacity to take over

their risky assets amid capital flight. Prices have to adjust in those markets instead of quantities.

This adjustment works through rising risk premia that convince foreign agents to stay. In rich

countries, ∆GE(·) is maximized. Local investors actively retrench. Even if ∆γ(t) were to fall

almost to zero, countries with large accumulated wealth (w −→ ∞) would simply take over their

entire foreign liabilities.

(a) Percentage changes in asset prices on impact
100 ·∆p(w, 0)/p(w) and the two components.

(b) Foreign sales ĥ(w)∆PE(w) and ĥ(w)∆GE(w)
as a share of the total outstanding stock of trees.

Figure 4: Asset price changes and foreign asset sales on impact for a 20% negative shock to γ(t).

The right panel of Figure 4 shows asset sales by the intermediary as a function of the country’s

wealth before the shock. The units are the share of the total stock of outstanding trees. The coun-

terfactual constant-price sales ĥ(w)∆PE(w) simply mimic the size of the intermediary’s position

in the country before the shock. Since this is maximized in poor countries, the sudden stop hits

the left tail of the wealth distribution especially hard. On top of this, there are no large domestic

investors in poor countries to sell to. The actual sales ĥ(w)∆GE(w) converge to zero at w −→ 0.
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(a) Percentage changes in regular countries’ wealth
on impact 100 ·∆p(w, 0)h(w)/w.

(b) Percentage change in intermediary’s wealth on
impact 100 ·∆p(w, 0)ĥ(w)/ŵ and 100 ·∆p̂(0)q̂/ŵ.

Figure 5: Wealth changes on impact for a 20% negative shock to γ(t). On the left: relative
changes in regular countries’ wealth. On the right: impact gains the intermediary makes on its
foreign assets (weighted with the wealth density of regular countries) and the impact gains it makes
on the special country’s tree (dashed line).

Intuitively, the difference between the two lines is the unsold stock of assets that measures how

much adjustment has to happen through prices.

Finally, Proposition 4 has direct implications for wealth redistribution in capital flight events.

Investors in regular countries hold two assets on their balance sheets: trees and short-term bonds.

There is no revaluation of the latter, so all changes in wealth come from the capital gains or losses

on the trees. Since ∆p(w, 0) is negative for small w and positive for large, wealth is redistributed

from poor countries to rich ones. The left panel of Figure 5 shows wealth changes on impact

resulting from the risk-taking capacity shock as a share of the country’s wealth before the shock.

The right panel of Figure 5 shows capital gains and losses the intermediary makes on its

portfolio when the shock hits. They are weighted with the wealth density of the regular countries,

so the shaded area adds up to total external gains and losses. The intermediary runs losses on

the left tail of the wealth distribution in times of capital flight, which is a well-known empirical

regularity. This is what the literature refers to as “exorbitant duty”. By absorbing part of the

losses on risky assets in regular countries, the special country essentially makes a wealth transfer to

them. This insurance mechanism is present in models of Maggiori (2017), Sauzet (2023), Dahlquist,

Heyerdahl-Larsen, Pavlova, and Pénasse (2022), and others.

A less-known outcome is that the special country makes capital gains on the right tail of the

wealth distribution. Assets in the right-tail countries, although intrinsically risky, endogenously

behave as safe and appreciate in capital flight events. This way, the rest of the world partly insures

the US. Another implication is that, through the US, rich countries also partly insure poor ones.

The intermediary’s net worth is an important state variable for all asset prices, and capital gains

that accrue to the US stabilize everyone’s asset prices by supporting the intermediary’s balance
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sheet in bad times.

Finally, the dashed line shows the capital gains on domestic assets, the special country’s tree.

These are unambiguously positive after a negative shock to γ(t). These capital gains can increase

the special country’s wealth in bad times even if it runs net losses on its net foreign asset position.

Dahlquist, Heyerdahl-Larsen, Pavlova, and Pénasse (2022) highlight accounting for internal hold-

ings as a way to reconcile the exorbitant duty of the US with the fact that its domestic currency

appreciates in bad times. As pointed out by Maggiori (2017), with home bias in consumption, a

country whose wealth share is falling should see its real exchange rate depreciate. If the US be-

comes relatively poorer as it transfers wealth to the rest of the world, its real exchange rate should

depreciate, absent other frictions and currency demand shocks. Capital gains on internal asset

markets can help the US increase its wealth share despite the wealth transfer to other countries.

Dahlquist, Heyerdahl-Larsen, Pavlova, and Pénasse (2022) argue that this is empirically true.

In my model, the sign of the net change in the special country’s wealth after the shock to γ(t)

is ambiguous and depends on the calibration. However, it is possible to say that losses on external

assets dominate when q̂ is small. Without large internal holdings, the special country surely

becomes relatively poorer, taking into account both its capital gains on rich regular countries and

its losses on the poor ones. I formulate this as a corollary to Proposition 4.

Corollary 3. If q̂ is small enough, the impact change in the special country’s wealth after a

negative shock to γ(t) is negative: ∆ŵ(0) < 0.

While the presence of domestic US assets does not guarantee that the US wealth share increases

in bad times in the model, their absence guarantees the opposite, and exorbitant duty obtains.

The reason is that, in the steady state, the intermediary invests more in risky assets in the left

tail of the wealth distribution, targeting their high idiosyncratic risk premia. These countries with

high idiosyncratic risk end up being negatively affected by global risk too, making returns on the

US external portfolio procyclical. In my calibration, the US makes net gains on impact, consistent

with the evidence presented by Dahlquist, Heyerdahl-Larsen, Pavlova, and Pénasse (2022).

5 Calibration and Estimation

I calibrate the model using its steady state and estimate the processes for aggregate shocks to

the intermediary’s risk-taking capacity γ(t) and global output ν(t) using linearized transition

dynamics. The steady state of the model is determined by seven parameters: {ρ, ν, σ, λ, λ̂, γ, q̂}.
The number of degrees of freedom is six: the interest rate r and the drift and variance of regular

countries’ wealth µw(w) and σw(w)
2 are homogeneous of degree one in {ρ, ν σ2, λ, λ̂}, while asset

prices p(w) and p̂, the special country’s wealth ŵ, and the wealth density g(w) are homogeneous

of degree zero. With these degrees of freedom, I discipline the parameters by bringing the model

to reproduce ten empirical moments.
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Table 1: steady-state calibration.

model target source

aggregates:

global risk-free rate 3.8% 3.8% Bertaut, Curcuru, Faia, and Gourinchas (2024)

average risk premium 5.1% 5.1% Bertaut, Curcuru, Faia, and Gourinchas (2024)

emerging market premium 2.9% 2.9% MSCI

US wealth share 37.7% 32.3% Credit Suisse (2022)

US output share 12.7% 22.8% World Bank

ratio A/L:

mean 0.72 0.71 IFS (IMF)

standard deviation 0.51 0.47 IFS (IMF)

q25 0.35 0.34 IFS (IMF)

q50 0.59 0.64 IFS (IMF)

q75 0.94 0.92 IFS (IMF)

First, I use recent evidence from security-level holdings provided by Bertaut, Curcuru, Faia,

and Gourinchas (2024). I take the average return on the US bond liabilities as a target for the

risk-free rate in my model. I then take the difference between the average return on the US equity

claims and its bond liabilities as a target for the average excess return earned by the intermediary.

To discipline the differences in excess returns between advanced economies and emerging markets,

I take MSCI equity indices for developed countries and emerging markets and compute the average

annualized difference in returns. I take the US wealth and output share from Credit Suisse (2022)

and the World Bank. The model underestimates the US output share, overestimating the special

country’s ability to generate wealth out of a given stock of productive assets. One reason for this

might be that in the data, global intermediaries are not domiciled exclusively in the US, with

some of the largest banks housed in Europe. The model, however, fully confines global financial

intermediation to the special country, directing all intermediation profits to its residents.

To discipline the wealth distribution, I take the following statistic. For every country, I compute

the ratio of external assets A(w) = (1 − θ(w))w to external liabilities L(w) = p(w)ĥ(w). I then

take the distribution of this variable and bring its mean, standard deviation, and three quartiles

close to the data. As an analog in the data, I take stocks of assets and liabilities corresponding to

“private flows” in the terminology of Forbes and Warnock (2012) and Forbes and Warnock (2021):

portfolio debt, portfolio equity, and banking flows. I exclude FDI and reserves. The data come

from the International Financial Statistics database provided by the IMF.

The ratio A(w)/L(w) is important because it shows the retrenchment capacity of the local

agents. The size of their foreign assets relative to their country’s external liabilities determines how

effectively they can replace foreign investors in a capital flight event. This is the main mechanism
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Table 2: Model parameters.

parameter value meaning

regular countries

ρ 0.0720 discount rate

ν 0.0383 output rate

σ 0.1168 output volatility

λ 0.0436 wealth emigration rate

special country

q̂ 0.1437 asset stock

γ 1.8806 risk-taking capacity

λ̂ 0.0892 wealth emigration rate

behind the heterogeneous responses to global shocks. Table 1 shows that, while not exact, the

match between the model and the data on the five moments of A/L is close. Table 2 shows the

parameter values. Appendix A provides additional details.

Turning to aggregate shocks, I postulate Ornstein-Uhlenbeck processes for the global risk-taking

capacity γ(t) and global output ν(t). Given persistence {µγ, µν} and loadings {σγ, σν},

dγ(t) = µγ(γ − γ(t))dt+ σγ · dW (t) (9)

dν(t) = µν(ν − ν(t))dt+ σν · dW (t) (10)

Here dW (t) is a two-dimensional standard Brownian motion and σγ and σν are two-dimensional

vectors. Without loss of generality, I take σν1 = 0, which leaves me with five parameters to

estimate: {µγ, µν , σγ1, σγ2, σν2}.
I use two global series from the model for estimation: total external assets A(t) and the average

risky asset price P (t):

A(t) =

∫
(1− θ(w, t))wdG(w, t)

P (t) =

∫
p(w, t)dG(w, t)

I linearize the model with respect to aggregate shocks and use the second-order approximation

around σ = 0, which turns out to be good in the third order: error terms are of order O(σ4).

Having obtained the linear perfect-foresight responses ∆A(t) and ∆P (t), I normalize them by

the steady-state values and use the moments of at = ∆A(t)/A and pt = ∆P (t)/P . Here A and

P correspond to A(t) and P (t) computed at the steady-state functions θ(w), p(w), and g(w). I

then work with the quarterly frequency of at and pt. Table 3a lists the five quarterly moments I

use: autocorrelations of at and pt, their standard deviations, and the contemporaneous correlation
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between the two. Appendix A provides details of the estimation procedure.

5.1 Data

To construct the data analog for outward flows, I take the Balance of Payments and International

Investment Positions data from the IMF. For a country i in quarter t, the quantity F
acq(raw)
it

denotes net purchases of foreign assets measured in dollars. This is a flow variable that measures

transactions, leaving out changes in positions due to valuation. Following Forbes and Warnock

(2012) and Forbes and Warnock (2021), I take a smooth version:

F acq
it =

t∑
t−3

F
acq(raw)
is −

t−4∑
t−7

F
acq(raw)
is

I restrict attention to portfolio debt, portfolio equity, and “other” assets, the latter corresponding

to banking flows. The empirical analog of at is

ãt =

∑
i F

acq
it∑

iAi,t−1

where Ai,t−1 is the dollar stock of these assets one quarter before in country i. See Appendix C

for details of data construction and sample statistics.

I construct the analog of pt from the MCSI asset price index that excludes the US. Denote the

quarterly version of this index by Qt. The analog of pt is quarterly returns smoothed over the

four-quarter window: p̃t =
∑t

t−3Qs/Qs−1.

Figure 6: Constructed data series p̃(t) and ã(t).

Figure 6 shows the data. The sample is 8 quarters long, starting in Q1 of 2003 and ending in Q4

of 2022. Table 3b shows estimated parameters. Table 3c shows the parameters of the discrete-time

processes corresponding to equation (9) and equation (10). Taking τ to be the length of one time
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(a) targeted moments.

std(pt) std(at) corr(pt, at) corr(pt, pt−1) corr(at, at−1)

data 0.046 0.048 0.725 0.776 0.843

model 0.046 0.049 0.721 0.776 0.843

(b) Estimation results.

µγ µν σγ1 σγ2 σν2

0.0966 0.0394 0.1422 0.5344 1.0141

(0.0002) (0.0002) (0.0002) (0.0006) (0.0003)

(c) Finite-time parameters of the shock processes.

ργ ρν ςγ1 ςγ2 ςν2
quarterly 0.875 0.776 0.024 · γ 0.010 · γ 0.022 · ν
annual 0.586 0.363 0.040 · γ 0.016 · γ 0.032 · ν

Table 3: estimation.

period, equation (9) and equation (10) generate the following discrete-time analogs:

γt+1 − γ = ργ(γt − γ) + ςγ1ε1,t+1 + ςγ2ε2,t+1

νt+1 − ν = ρν(νt − ν) + ςν2ε2,t+1

Here {εi,t+1}i=1,2 are standard normals, and {ργ, ρν , ςγ1, ςγ2, ςν2} depend on {µγ, µν , σγ1, σγ2, σν2}
and the length of the time period τ . Table 3c shows the results for τ = 0.25 and τ = 1.

5.2 Untargeted moments

The model is able to match the five parameters of the aggregate series exactly. I next show that it

also qualitatively matches the differences between advanced economies and emerging markets. For

this exercise, I put the boundary between advanced economies (AE) and emerging markets (EM)

at the point w where the first-order response of asset prices ∆p(w, t) to a risk-taking capacity

shock ∆γ(t) changes the sign. To the right of the boundary lay rich countries, where asset prices

increase after a negative shock to γ(t). To the left are emerging markets. To compute group-level

aggregates, I take integrals with conditional distributions for [0, w] and [w,∞) respectively.

In the data, I use the IMF classification to designate advanced economies and emerging markets

for capital flow series.2 For risky asset prices, I use two different equity price indices from MSCI:

its EM3 index and its developed markets EAFE4 index.

2https://www.imf.org/en/Publications/WEO/weo-database/2023/April/groups-and-aggregates
3https://www.msci.com/documents/10199/c0db0a48-01f2-4ba9-ad01-226fd5678111
4https://www.msci.com/documents/10199/822e3d18-16fb-4d23-9295-11bc9e07b8ba

27

https://www.imf.org/en/Publications/WEO/weo-database/2023/April/groups-and-aggregates
https://www.msci.com/documents/10199/c0db0a48-01f2-4ba9-ad01-226fd5678111
https://www.msci.com/documents/10199/822e3d18-16fb-4d23-9295-11bc9e07b8ba


Table 4: untargeted moments.

std(pt) std(at) std(bt)

data model data model data model

advanced economies 0.046 0.037 0.050 0.026 0.040 0.031

emerging markets 0.060 0.042 0.059 0.048 0.025 0.019

In addition to the series at = ∆A(t)/A and pt = ∆P (t)/P described above, I also use the ratio

of outward flows to external liabilities bt = ∆A(t)/L. Here

L =

∫
p(w)ĥ(w)dG(w)

In the model, this moment shows how much retrenchment happens in both country groups relative

to the stock of the intermediary’s group-level holdings. As discussed in Section 4, at the level of

individual countries, this variable is an important determinant of how much adjustment to external

shocks happens through prices and how much happens through quantities. In advanced economies,

retrenchment should be more active as measured relative to outstanding stock of liabilities, and

this is what stabilizes their local risk premia.

Table 4 shows standard deviations of asset prices, outward flows normalized by external assets,

and outward flows normalized by external liabilities in the two country groups. While not hitting

the moments exactly, the model reproduces the sign of the difference in all three. Asset prices

are more volatile in emerging markets. Outward flows relative to foreign assets are more volatile

in emerging markets too, reflecting a smaller denominator. Importantly, outward flows relative

to foreign liabilities are more volatile in advanced economies, reflecting the fact that local agents

retrench in times of negative global shocks, taking over their domestic asset markets and stabilizing

price movements.

The second set of untargeted moments that the model reproduces qualitatively describes the

cyclicality of asset prices and the relative performance of advanced economies compared to emerging

markets. Given the series {p̃t, p̃AE
t , p̃EM

t , ãt}, I regress p̃t and p̃AE
t − p̃EM

t on ãt:

p̃t = α + βãt + ut (11)

p̃AE
t − p̃EM

t = α + βãt + vt (12)

I then run the same regressions on one thousand years of simulated data in the model. Table 5

presents the results.

The good fit on the first regression is due to the fact that cor(ãt, p̃t) is one of the estimation

targets. The coefficient in the second regression is not targeted. The model reproduces its sign

correctly, showing that risky assets in advanced economies typically outperform those in emerging
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Table 5: asset price cyclicality regressions in equation (11) and equation (12).

p̃t p̃AE
t − p̃EM

t

data model data model

ãt 0.739 0.700 -0.160 -0.084

(0.069) (0.010) (0.066) (0.001)

R2 0.60 0.55 0.07 0.74

N 77 4000 77 4000

markets when capital flows recede, both in the model and the data. The size of the coefficient is

about half of that in the data, showing that the model can generate about half of the variation in

the relative performance of advanced economies compared to emerging markets out of the same

variation in global capital flows. The total variation in the relative performance of equities is

considerably larger in data, however, owing to other factors not captured by global capital flows.

(a) Average risky asset returns against total nor-
malized outward flows.

(b) Relative risky asset returns in AE in EM
against total normalized outward flows.

Figure 7: Data and model simulations for equation (11) and equation (12).

6 Additional Empirical Results

I now present additional evidence on the heterogeneous responses of countries to global capital flight

events and interpret them through the lens of the model. I use two ways to classify countries. First,

I designate them as advanced economies or emerging markets according to the IMF breakdown.

Second, I use the ratio of private foreign assets (portfolio debt and equity plus “other” assets,

which stands for bank claims) to GDP as a measure of a country’s financial development. This

variable is a direct counterpart to wealth in the model since the model keeps expected output

constant across countries, implicitly making the same normalization. The correlation between the
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two measures, excluding offshore financial centers, is 69%. Asset stock data come from the IMF

IFS database, and GDP numbers come from the World Bank.

As country-specific outcomes, I first take a panel of government bond yields yit from the IMF

International Financial Statistics database to complement equity price indices provided by MSCI.

I then add financial account flows from the IMF Balance of Payments database to construct

the following panels. First, I take total acquisition of foreign private assets F
acq(raw)
it and total

incurrence of external private liabilities F
inc(raw)
it by country-quarter and apply the smoothing

procedure from Forbes and Warnock (2012) and Forbes and Warnock (2021):

F acq
it =

t∑
t−3

F
acq(raw)
is −

t−4∑
t−7

F
acq(raw)
is

F inc
it =

t∑
t−3

F
inc(raw)
is −

t−4∑
t−7

F
inc(raw)
is

I then produce panels of normalized asset acquisition and incurrence:

ait =
F acq
it

Ai,t−1

bit =
F acq
it

Li,t−1

lit =
F inc
it

Li,t−1

Here ait is acquisition normalized by assets one quarter before, bit is acquisition normalized by

liabilities one quarter before, and lit is incurrence normalized by liabilities one quarter before. The

interpretation of ait is the intensity of portfolio rebalancing: how much of their foreign holdings

investors sell when they retrench in crises or how much they increase their foreign holdings in

booms. The interpretation of bit is the scale of their retrenchment relative to potential sales by

foreign investors in a capital flight event. Large negative numbers here mean that local agents are

actively replacing foreign investors. Through the lens of the model, this indicates that a country

adjusts to foreign demand shocks through quantities rather than prices. The variable lit shows

how much of their holdings foreign investors sell.

I extract the principal components f acq
t and f inc

t from the acquisition and incurrence panels

{F acq
it } and {F it

it }, choosing the largest balanced panel in the sample: 78 quarters from Q4 of

2003 to Q1 of 2023, which includes 85 and 83 countries for acquisition and incurrence respectively.

These principal components serve as a measure of the global cycle in capital flows. Figure 8 plots

the two series. Capital flight events around the Global Financial Crisis in 2008-2009, the European

debt crisis in 2011-2012, the stock market crash in developing countries in 2016, and the trade

war instability of 2018 are clearly visible on the figure. The acquisition and incurrence principal
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Figure 8: principal components of asset acquisition and liability incurrence.

components are closely related: the correlation between them is 92%. This is in line with existing

evidence on the strong co-movement of inward and outward gross flows found by Forbes and

Warnock (2012), Forbes and Warnock (2021), Barrot and Serven (2018), Cerutti, Claessens, and

Puy (2019), Davis, Valente, and Van Wincoop (2021), and Miranda-Agrippino and Rey (2022).

I also use two price-based aggregates as a measure of the global financial cycle: CBOE VIX

and the excess bond premium (EBP) of Gilchrist and Zakraǰsek (2012). The sample covers Q4 of

2003 to Q1 of 2023. Table 6 shows their correlations with the principal components of gross flows.

Unsurprisingly, high VIX and excess bond premium that signal rising uncertainty and tightening

financial conditions are associated with receding capital flows.

Table 6: correlations between the principal components of gross flows and VIX and EBP.

VIX EBP

f acq
t -0.48 -0.74

f inc
t -0.42 -0.66

I next take the six panels {F acq
it , F acq

it , yit, ait, bit, lit} and compute country-specific loadings on

all four aggregates {f acq
t , f inc

t ,VIXt,EBPt}. The goal is to see if the loadings of advanced economies

are systematically different from those of emerging markets, showing heterogeneity in exposure,

and whether this heterogeneity is consistent with the model predictions. Formally, let βi(x, z) be

country i’s loading of the outcome x on the aggregate z:

xit = αi(x, z) + βi(x, z)zt + εit(x, z)

I then estimate ηAE(x, z) and ηG(x, z) in

βi(x, z) = ξAE(x, z) + ηAE(x, z)1{i ∈ AE}+ εAE
i (13)

βi(x, z) = ξG(x, z) + ηG(x, z)Gi + εGi (14)
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Table 7: loadings of asset acquisition F acq
it , liability incurrence F inc

it , and bond yields yit on the
global factors regressed on the advanced economy status and the assets-to-GDP ratio. The table
shows the coefficients {ηAE(x, z), ηG(x, z)} from regressions in equation (13) and equation (14) for
aggregates z listed as columns and outcomes x listed as rows.

loadings on f acq
t loadings on f inc

t loadings on VIXt loadings on EBPt

1{i ∈ AE} Gi 1{i ∈ AE} Gi 1{i ∈ AE} Gi 1{i ∈ AE} Gi

F acq
it 0.397 0.193 0.371 0.207 -0.216 -0.131 -0.296 -0.174

(0.054) (0.038) (0.052) (0.036) (0.039) (0.026) (0.044) (0.030)

F inc
it 0.289 0.136 0.262 0.130 -0.195 -0.111 -0.266 -0.134

(0.057) (0.039) (0.061) (0.041) (0.043) (0.029) (0.051) (0.034)

yit 0.962 0.552 0.919 0.551 -0.623 -0.371 -0.644 -0.386

(0.559) (0.310) (0.555) (0.307) (0.497) (0.276) (0.412) (0.228)

Here Gi is a country i’s average assets-to-GDP ratio in 2014-2020. I estimate {ηAE(x, z), ηG(x, z)}
for all outcomes x (acquisition, incurrence, bond yields, acquisition normalized by assets and by

liabilities, and incurrence normalized by liabilities) and all aggregates z (principal components of

acquisition and incurrences, VIX, and EBP). Appendix C provides details for all regressions.

Table 7 shows the results for the first three outcomes: total private foreign asset acquisition,

total private external liability incurrence, and government bond yields. The acquisition and in-

currence series are normalized to have a unit standard deviation for each country. All aggregate

series are normalized as well. The coefficients in this table read as follows. Take, for example, the

first column and the first row. In advanced economies, a one standard deviation increase in f acq
t

is associated with 0.397 more standard deviations of foreign asset acquisition than in emerging

markets. Conversely, when f acq
t falls by one standard deviation, advanced economies sell 0.397

standard deviations more of their foreign assets than emerging markets.

The row marked {F inc
it } refers to the incurrence of liabilities, which stands for asset sales and

purchases of foreign investors in country i. Foreign agents sell 0.289 standard deviations more

of their holdings in advanced economies than in emerging markets when f acq
t decreases by one

standard deviation. This might go against conventional wisdom that holds emerging markets to

be more exposed to capital flight. However, it is consistent with the mechanism in my model:

even though asset sales are targeting emerging markets, advanced economies have larger and more

elastic investors who stand ready to buy back their domestic assets in bad times. This results in

larger transaction volumes that indicate adjustment through quantities rather than prices.

The last rows are devoted to bond yields. The coefficients have the right sign but are not

precisely estimated. They should be interpreted as suggestive. A standard increase in f acq
t induces

government bond yields to rise by 1pp more in advanced economies (or rather fall by 1pp less,

since facq
t rises in booms when yields are falling). This means that emerging markets reap larger

benefits in terms of borrowing costs in good times. In bad times, their bond yields rise more.

32



Table 8: loadings of asset acquisition normalized by assets ait and liabilities bit and liability incur-
rence normalized by liabilities lit on the global factors regressed on the advanced economy status
and the assets-to-GDP ratio. The table shows the coefficients {ηAE(x, z), ηG(x, z)} from equa-
tion (13) and equation (14) for aggregates z listed as columns and outcomes x listed as rows.

loadings on f acq
t loadings on f inc

t loadings on VIXt loadings on EBPt

1{i ∈ AE} Gi 1{i ∈ AE} Gi 1{i ∈ AE} Gi 1{i ∈ AE} Gi

ait 0.027 0.010 0.025 0.010 -0.016 -0.009 -0.018 -0.009

(0.010) (0.006) (0.010) (0.006) (0.008) (0.005) (0.009) (0.006)

bit 0.022 0.009 0.019 0.012 -0.002 -0.015 -0.012 -0.014

(0.007) (0.004) (0.006) (0.004) (0.013) (0.008) (0.006) (0.004)

lit 0.020 0.007 0.018 0.006 -0.014 -0.006 -0.020 -0.008

(0.006) (0.004) (0.006) (0.004) (0.005) (0.003) (0.006) (0.004)

The signs are negative for VIX and EBP since these factors rise in crises. The results stand for

assets-to-GDP as a measure of financial development instead of the advanced economy indicator,

which is also in line with the model predictions.

Table 8 does the same exercise for gross flows normalized by stocks: acquisition as a share of

assets ait, acquisition as a share of liabilities bit, and incurrence as a share of liabilities lit. These

series are not normalized. When f acq
t falls by one standard deviation, investors from advanced

economies sell 2.7 percentage points more of their foreign holdings. They also sell 2.2 percentage

point more of their country’s external liabilities. Finally, foreign investors sell 2 percentage points

more of their holdings in advanced economies. The latter two numbers confirm that investors in

advanced economies retrench more actively, replacing the shortfall in foreign demand. This pattern

is largely robust to the choice of the global factor and stands when economies are classified into

developed and developing using their assets-to-GDP ratios.

7 Conclusion

This paper develops a heterogeneous-country model of the world economy with symmetric fun-

damentals and one state variable per country. While simple enough to show the main results

analytically in a small-shock approximation, the model captures the main dimensions of hetero-

geneous responses to global financial shocks: asset prices react more in emerging markets, while

outflows of foreign investors are larger in advanced economies. Given its ability to encompass

the entire cross-section of risk premia and generate persistent wealth differences out of symmetric

fundamentals, in future work, this framework could prove useful for studying the causes and con-

sequences of persistent differences in asset prices and interest rates. It could also help study the

global equilibrium implications of monetary and fiscal shocks in the dominant country, commodity

price shocks, and shocks to financial and trade openness.
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A Details of calibration and estimation.

A.1 Calibration

To calibrate the model, I construct the empirical distribution of assets-to-liability ratios A/L. I

take private assets and liabilities: portfolio debt and equity and “other” claims. My sample starts

in Q1 of 2003 and extends to 2024. I exclude the US to account for the fact it is a special country

in the model. To adjust for the fact that not all countries are present in the sample throughout

the period, I assign weights {ωi} to all observations of a country i, where ωi is the inverse of the

share of the quarters the country i appears in the panel. I solve for the steady state of the model

in full, not using the second-order approximation.

A.2 Estimation

Formally, given a sample path of {W (s)} and the corresponding sample paths of {∆γ(s),∆ν(s)},
I take the first-order approximation of {A(s), P (s)} around ∆γ(s) ≡ ∆ν(s) ≡ 0. In addition, at

every t, the agents perceive the sample paths of {∆γ(s),∆ν(s)}s>t in the future as follows. They do

not know the future realizations of {W (s)}s>t and assume that {∆γ(s),∆ν(s)}s>t will simply decay

to their long-run values: for all s > t, ∆γ(s) = e−µγ(s−t)∆γ(t) and ∆ν(s) = e−µν(s−t)∆ν(t). This

corresponds to setting σγ = σν = (0, 0) and solving the model with perfect foresight of the aggregate

shocks. To simplify computations, I additionally rely on the second-order approximation of the

model around σ = 0, which is really a third-order approximation because error terms are O(σ4).

I normalize the first-order deviations ∆A(t) and ∆P (t) by the steady-state value: at = ∆A(t)/A

and pt = ∆P (t)/P . The following proposition establishes the main technical result.

Proposition 5. Consider a first-order perfect-foresight approximation of the model around the

steady state. Assume that output shocks are small, σν = σ2σν. Suppose the linearized economy

converges to the steady state at infinity for any unanticipated transitory shock to γ(t) and ν(t).

Then, given a sample path of {W (s)},

∆a(t) = Ja,γ

∫ ∞

s=0

e−µγsσγ · dW (t− s) + Ja,ν

∫ ∞

s=0

e−µνsσν · dW (t− s) +O(σ4)

∆p(t) = Jp,γ

∫ ∞

s=0

e−µγsσγ · dW (t− s) + Jp,ν

∫ ∞

s=0

e−µνsσν · dW (t− s) +O(σ4)

The numbers {Ja,γ, Ja,ν , Jp,γ, Jp,ν} only depend on the steady-state objects and parameters and µγ.

I provide the functional forms of {Ja,γ, Ja,ν , Jp,γ, Jp,ν} in the proof. This result is similar in spirit

to Proposition 4. The technical significance is that the weights on past realizations only have to

account for the exponential decay rate. For a sequence-space Jacobian analogy, the Jacobian only

has zeros under the main diagonal, and to the right of the main diagonal, all rows are translated
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copies of each other, with entries decaying exponentially as the time index moves to the past.

The expressions in Proposition 5 allow for explicit characterization of the following moments:

E[∆a(t)∆a(t− τ)] =
e−µγτJ2

a,γ(σ
2
γ1 + σ2

γ2)

2µγ

+
e−µντJ2

a,νσ
2
ν2

2µν

+
(e−µγτ + e−µντ )Ja,γJa,νσγ2σν2

(µγ + µν)

E[∆p(t)∆p(t− τ)] =
e−µγτJ2

p,γ(σ
2
γ1 + σ2

γ2)

2µγ

+
e−µντJ2

p,νσ
2
ν2

2µν

+
(e−µγτ + e−µντ )Jp,γJp,νσγ2σν2

(µγ + µν)

E[∆a(t)∆p(t)] =
Ja,γJp,γ(σ

2
γ1 + σγ22)

2µγ

+
Ja,νJp,νσ

2
ν2

2µν

+
(Ja,γJp,ν + Jp,γJa,ν)σγ2σν2

µγ + µν

E[∆a(t)2] =
J2
a,γ(σ

2
γ1 + σ2

γ2)

2µγ

+
J2
a,νσ

2
ν2

2µν

+
2Ja,γJa,νσγ2σν2

µγ + µν

E[∆p(t)2] =
J2
p,γ(σ

2
γ1 + σ2

γ2)

2µγ

+
J2
p,νσ

2
ν2

2µν

+
2Jp,γJp,νσγ2σν2

µγ + µν

To get the mapping from the continuous-time parameters to their discrete analogs, solve the

stochastic differential equation (9) and equation (10):

γ(t)− γ = e−µγτ (γ(t− τ)− γ) +

∫ τ

0

e−µγsσγ1dW1(t− s) +

∫ τ

0

e−µγsσγ2dW2(t− s)

ν(t)− ν = e−µντ (ν(t− τ)− ν) +

∫ τ

0

e−µνsσγ2dW2(t− s)

Substituting the stochastic integrals random variables and defining parameters,

γt+1 − γ = ργ(γt − γ) + ςγ1ε1,t+1 + ςγ2ε2,t+1

νt+1 − ν = ρν(νt − ν) + ςν2ε2,t+1

Here the persistence parameters are ργ = e−µγτ , ρν = e−µντ , random variables (ε1,t+1, ε2,t+1) are

independent standard normals, and the volatilities of innovations are

ςγ1 = σγ1

√
V
[∫ τ

0

e−µγsdW1(s)

]
= σγ1

√
E
[∫ τ

0

e−2µγsds

]
= σγ1

√
1− e−2µγτ

2µγ

Similarly,

ςγ2 = σγ2

√
1− e−2µγτ

2µγ

ςν2 = σν2

√
1− e−2µντ

2µν
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B Proofs.

Proof of Lemma 1. Start with local agents. Denote by w their individual wealth and let x be

all other state variables. Excess returns are

dR = µR(x, t)dt+ σR(x, t)dZ

Since aggregate dynamics are deterministic, x only loads on the same diffusion dZ. Let µX(x, t)

and σX(x, t) be the drift and loading vectors of x:

dx = µX(x, t)dt+ σX(x, t)dZ

The HJB equation for the local agent’s value V (w, x, t) is

ρV (w, x, t)− ∂tV (w, x, t) = max
c,θ

ρ log(c) + (r(t)w − c+ θµR(x, t)w)∂wV (w, x, t)

+
θ2σR(x, t)

2w2

2
∂2
wwV (w, x, t) + µX(x, t) · ∂xV (w, x, t)

+
1

2
tr[σX(x, t)

′∂2
xxV (w, x, t)σX(x, t)] + σX(x, t) · ∂2

wxV (w, x, t)θσR(x, t)w

Guess V (w, x, t) = log(w) + η(x, t). Under this and σR(x, t) > 0, ∂2
wxV (w, x, t) = 0, c∗ = ρw, and

θ∗ =
µR(x, t)

σR(x, t)2

Plugging this into the HJB and cancelling terms,

ρη(x, t)− ∂tη(x, t) = r(t)− ρ+
µR(x, t)

2

2σR(x, t)2
+ µX(x, t) · ∂xη(x, t) +

1

2
tr[σX(x, t)

′∂2
xxη(x, t)σX(x, t)]

This verifies the conjecture that V (w, x, t) is separable over w and (x, t).

Continue with the intermediary. Its state variables are its own wealth ŵ and time: aggregate

dynamics are deterministic, so the special country’s aggregate wealth ŵ and the wealth distribution

of the regular countries G(·, t) are functions of time only. The intermediary’s value function V̂ (ŵ, t)

solves the following HJB:

ρV̂ (ŵ, t)− ∂tV̂ (ŵ, t) = max
ĉ,θ(·),θ̂

ρ log(ĉ)

+

(
r(t)ŵ − c+

∫
µR(w, t)θ̂(w)ŵdG(w, t) + µ̂R(t)θ̂ŵ

)
∂ŵV̂ (ŵ, t)

s.t.

∫
σR(w, t)

2θ(w)2dG(w, t) ≤ γ

∫
µR(w, t)θ(w)dG(w, t) (A.1)
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Conjecture that V̂ (ŵ, t) = log(ŵ) + η̂(t). Under this and σR(w, t) > 0, ĉ = ρŵ and

θ∗(w) =
1 + γξ(ŵ, t)

2ξ(ŵ, t)
· µR(w, t)

σR(w, t)2

Here ξ(ŵ, t) is the multiplier on the value-at-risk constraint in equation (A.1). In general, the

multiplier can depend on all states.

Observe that the constraint binds whenever µR(w, t) > 0 for a positive measure of x. Other

cases are not interesting since the value-at-risk constrain is only satisfied if θ∗(w) = 0 for all w,

but with µR(w, t) = 0, local agents do not hold any assets either, so asset markets do not clear.

Plugging θ∗(w) into equation (A.1),(
(1 + γξ(ŵ, t))2

4ξ(ŵ, t)2
− γ

1 + γξ(ŵ, t)

2ξ(ŵ, t)

)
·
∫

µR(w, t)
2

σR(w, t)2
dG(w, t) = 0

Since µR(w, t) > 0 for a positive measure of x, γξ(ŵ, t) = 1, and hence

θ∗(w) = γ · µR(w, t)

σR(w, t)2

Plugging this and ĉ = ρŵ back into the HJB and cancelling terms,

ρη̂(t)− η̂′(t) = r(t)− ρ+ γ

∫
µR(w, t)

2

σR(w, t)2
dG(w, t)

This verifies the conjecture that V̂ (ŵ, t) is separable over ŵ and t and completes the proof.

Finally, I describe potential pathological equilibria with σR(w, t) = 0. Since in this case it has

to be that µR(w, t) = 0,

dp = (r(t)p− ν(t))dt− σdZ

Asset prices are not guaranteed to be positive and do not have a stationary distribution even if

aggregates are constant. The drift of the price is increasing in the price itself, and the volatility is

constant, leading to stochastic instability. Asset prices are also divorced from the fundamentals, not

being a function of local wealth or the intermediary’s wealth or risk-taking capacity. Finally, since

µR(w, t) = σR(w, t) = 0, asset positions are indeterminate, and the presence of risky assets does

not affect wealth dynamics. Wealth is solely determined by the initial conditions and the perpetual

youth terms. The condition σR(w, t) ̸= 0 rules these economically uninteresting equilibria out. □

Proof of Proposition 1. Portfolio shares in Lemma 1, the fact that hit = θitwit/pit and ĥit =
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θ̂itŵt/pit, and market clearing for each country’s tree (hit+ĥit = 1) lead to the following expression:

pit = (wit + γtŵt) ·
µR
it

(σR
it )

2

From this expression, it follows that θit = pit/(wit+γtŵt) and θ̂it = γtpit/(wit+γtŵt)m which leads

to hit = wit/(wit + γtŵt) and ĥit = γtŵt/(wit + γtŵt). Finally, equation (4) follows from applying

the relation between (µR
it , σ

R
it ) and (µp

it, σ
p
it). □

Proof of Proposition 2. Applying Itô’s lemma to p(w, t),

µp(w, t) = ∂tp(w, t) + µw(w, t)∂wp(w, t) +
σw(w, t)

2

2
∂2
wwp(w, t)

σp(w, t) = σw(w, t)∂wp(w, t)

Now plug this into equation (4):

r(t)p(w, t)− ∂tp(w, t) = ν(t) + µw(w, t)∂wp(w, t) +
σw(w, t)

2

2
∂2
wwp(w, t)−

(σw(w, t)∂wp(w, t) + σ)2

w + γ(t)ŵ(t)

Plug the optimal consumption and portfolio choice into the local agent’s budget constraint:

µw(w, t) = (r(t)− ρ− λ)w + λ̂ŵ(t) +
µR(w, t)

2

σR(w, t)2
w

σw(w, t) =
µR(w, t)

σR(w, t)
w

Eliminating µR(w, t) and σR(w, t) from the expression for µw(w, t),

µw(w, t) = (r(t)− ρ− λ)w + λ̂ŵ(t) +
σw(w, t)

2

w

Next, using the fact that σw(w, t) = θ(w)σR(w, t)w, the definition σR(w, t) = (σ+σp(w, t))/p(w, t),

and θ(w) = p(w)/(w + γŵ(t)), which follows from market clearing,

σw(w, t) =
(σ + σp(w, t))w

w + γ(t)ŵ(t)
=

(σ + σw(w, t)∂wp(w, t))w

w + γ(t)ŵ(t)
=

σw

w + γ(t)ŵ(t)− w∂wp(w, t)

With this, the pricing equation can be transformed to

r(t)p(w, t)− ∂tp(w, t) = ν(t)− σ2(w + γ(t)ŵ(t))

[w + γ(t)ŵ(t)− w∂wp(w, t)]2

+ µw(w, t)∂wp(w, t) +
σw(w, t)

2

2
∂2
wwp(w, t)
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Define the risk compensation

π(w, t) =
w + γ(t)ŵ(t)

[w + γ(t)ŵ(t)− w∂wp(w, t)]2

This completes the description of p(w, t), π(w, t), µw(w, t), and σw(w, t). To derive the expression

for the interest rate, multiply equation (6) by the density g(w, t) and integrate:

r(t)

∫
p(w, t)g(w, t)dw −

∫
∂tp(w, t)g(w, t)dw = ν(t)− σ2

∫
π(w, t)g(w, t)dw

+

∫
µw(w, t)g(w, t)∂wp(w, t)dw +

∫
σw(w, t)

2g(w, t)

2
∂2
wwp(w, t)dw

Integrate the last two terms by parts to get∫
r(t)p(w, t)g(w, t)dw −

∫
∂tp(w, t)g(w, t)dw = ν(t)−

∫
σ2π(w, t)g(w, t)dw

−
∫

∂w(µw(w, t)g(w, t))p(w, t)dw +

∫
∂2
ww(σw(w, t)

2g(w, t))

2
p(w, t)dw

Using equation (5), replace the last two terms

r(t)

∫
p(w, t)g(w, t)dw −

∫
∂tp(w, t)g(w, t)dw = ν(t)− σ2

∫
π(w, t)g(w, t)dw +

∫
∂tg(w, t)p(w, t)dw

This implies

r(t)

∫
p(w, t)g(w, t)dw −

∫
∂t(p(w, t)g(w, t))dw = ν(t)− σ2

∫
π(w, t)g(w, t)dw (A.2)

Now use the fact that expected returns on the special country’s tree are zero:

r(t)p̂(t)− p̂′(t) = ν(t)

Multiplying this equation by q̂ and adding to equation (A.2),

r(t)

(∫
p(w, t)g(w, t)dw + q̂p̂(t)

)
− ∂t

(∫
p(w, t)g(w, t)dw + q̂p̂(t)

)
= (1 + q̂)ν(t)

− σ2

∫
π(w, t)g(w, t)dw

Consumption market clearing and c(w, t) = ρw and ĉ(t) = ρŵ(t) imply∫
p(w, t)g(w, t)dw + q̂p̂(t) =

∫
wg(w, t)dw + ŵ(t) =

(1 + q̂)ν(t)

ρ

6



Hence,

(1 + q̂)r(t)ν(t)

ρ
− (1 + q̂)ν ′(t)

ρ
= (1 + q̂)ν(t)− σ2

∫
π(w, t)g(w, t)dw

Reorganizing this,

r(t) = ρ+
ν ′(t)

ν(t)
− ρσ2

(1 + q̂)ν(t)

∫
π(w, t)g(w, t)dw

This completes the proof. □

Proof of Corollary 1. In the steady state, dŵ(t) = 0. Using the intermediary’s budget constraint

and setting the perpetual youth terms to zero, λ = λ̂ = 0,

ĉ = rŵ +

∫
ŵθ̂(w)µR(w)dG(w) = r

(∫
p(w)ĥ(w)dG(w)− b̂+ q̂p̂

)
+

∫
ŵθ̂(w)θ(w)σR(w)

2dG(w)

= q̂ν + r

(∫
p(w)ĥ(w)dG(w)− b̂

)
+

∫
γŵ(σw(w)p

′(w) + σ)2

(w + γŵ)2
dG(w)

= q̂ν + r

(∫
p(w)ĥ(w)dG(w)− b̂

)
+

∫
γŵσ2

[w + γŵ − wp′(w)]2
dG(w)

= q̂ν + r

(∫
p(w)ĥ(w)dG(w)− b̂

)
+

∫
σ2ĥ(w)π(w)dG(w)

The firs equality here uses the definition of wealth ŵ and fact that θ(w) = muR(w)/σR(w)
2, the

second equality uses p̂ = ν/r and plugs in σR(w) = (σp(w) + σ)/p(w) = (σw(w)p
′(w) + σ)/p(w),

the third one plugs in σw(w), and the last one uses the expressions for π(w) and ĥ(w). This proves

the first part.

On the other hand,

ĉ = rŵ +

∫
ŵθ̂(w)µR(w)dG(w) = r

(∫
p(w)ĥ(w)dG(w)− b̂+ q̂p̂

)
+

∫
ŵθ̂(w)

µp(w) + ν − rp(w)

p(w)
dG(w)

= q̂ν + r

(∫
p(w)ĥ(w)dG(w)− b̂

)
+

∫
γŵ

µp(w) + ν − rp(w)

w + γŵ
dG(w)

= q̂ν + r

(∫
p(w)ĥ(w)dG(w)− b̂

)
+

∫
ĥ(w)(ν − rp(w))dG(w) +

∫
ĥ(w)µp(w)dG(w)

Here the first equality uses the definition of wealth ŵ and expected excess returns µR(w), the

second equality uses p̂ = ν/r and θ̂(w) = γθ(w) = γp(w)/(w + γŵ), and the third one uses the

expression for ĥ(w). This proves the second part. □

7



Proof of Corollary 2. Consider the volatility of wealth first. Since p′(w) −→ 0 as w −→ ∞,

σw(w) =
σ

1 + ŵ/w − p′(w)
−→ σ

From this, it immediately follows that

µw(w)

w
= r − ρ− λ+

λ̂ŵ

w
+

σw(w)
2

w2
−→ r − ρ− λ

The risk price π(w) converges to zero as well:

π(w) =
w + γŵ

[w + γŵ − wp′(w)]2
=

1

w
· 1 + γŵ/w

[1 + γ/w − p′(w)]2
−→ 0

Now consider the pricing equation

rp(w) = ν − σ2π(w) + µw(w)p
′(w) +

σw(w)
2

2
p′′(w)

The claim is that p(w) −→ ν/r as w −→ ∞. Suppose, toward a contradiction, that there exists

ε > 0 such that for all W > 0 there is a w > W such that |p(w)−ν/r| > ε. Then, since p′′(w) −→ 0

and σw(w)0 as w −→ ∞, it must be that there exists ε > 0 such that for all W > 0 there is a

w > W such that |µw(w)p
′(w)| > ε. This last inequality can be rewritten as∣∣∣∣µw(w)

w
· p′(w)w

∣∣∣∣ > ε =⇒
∣∣∣∣µw(w)

w

∣∣∣∣ · |p′(w)w| > ε

But since µw(w)/w −→ r − ρ − λ, there exists a W > 0 such that for all w > W , it holds that

|µw(w)/w| < 2|r − ρ− λ|. Hence, there exists a W > 0 such that for all w > W ,

|p′(w)|w > |p′(w)w| > ε

2|r − ρ− λ|

This implies that p′(w) does not change its sign on (W,∞). Hence, on all of the (W,∞),

either p′(w) >
ε

2w|r − ρ− λ|
or p′(w) < − ε

2w|r − ρ− λ|

Integrating p′(w) from W to (1 + δ)W ,

either p((1 + δ)W ) > p(W ) +
log(1 + δ)ε

2|r − ρ− λ|
or p((1 + δ)W ) < p(W )− log(1 + δ)ε

2|r − ρ− λ|

This contradicts p(·) having a finite limit at infinity. Hence, p(w) −→ ν/r as w −→ ∞. □
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Proof of Proposition 3. Start with the pricing equation:

rp(w) = ν − σ2π(w) + µw(w)p
′(w) +

σw(w)
2

2
p′′(w)

Take the interest rate:

r = ρ− ρσ2

(1 + q̂)ν

∫
π(x)dG(x) = ρ+O(σ2)

This implies

µw(w) = (r − ρ− λσ2)w + λ̂σ̂2ŵ +
σw(w)

2

w

= λ̂σ̂2ŵ −
(

ρ

(1 + q̂)ν

∫
π(x)dG(x) + λ

)
σ2w +

σ2w

[w + γŵ − wp′(w)]2
= O(σ2)

Since µw(w) = O(σ2), σw(w)
2 = O(σ2), and r = ρ+O(σ2), the pricing equation can be cast as

ρp(w) = ν +O(σ2) =⇒ p(w) =
ν

ρ
+O(σ2)

This immediately implies p′(w) = O(σ2) and p′′(w) = O(σ2), leading to

π(w) =
1

w + γŵ
+O(σ2) ≡ π(w) +O(σ2)

Hence,

r = ρ− ρσ2

(1 + q̂)ν

∫
π(x)dG(x) +O(σ4)

This establishes the approximation for r. Using this and µw(w)p
′(w) + σw(w)

2p′′(w)/2 = O(σ4),(
ρ− ρσ2

(1 + q̂)ν

∫
π(x)dG(x)

)
p(w) = ν − σ2π(w) +O(σ4)

Reorganizing,

p(w) =
ν

ρ
+

σ2

ρ

[
1

1 + q̂

∫
π(x)dG(x)− π(w)

]
+O(σ4)

Similarly, rp̂ = ν implies

p̂ =
ν

ρ
+

σ2

(1 + q̂)ρ

∫
π(x)dG(x) +O(σ4)
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This establishes the approximation for asset prices. Finally, wealth dynamics are

σw(w) =
σw

w + γŵ
+O(σ3) ≡ σs(w) +O(σ3)

µw(w) = σ2

[
λ̂ŵ +

(
π(w)2 − ρ

(1 + q̂)ν

∫
π(x)dG(x)− λ

)
w

]
+O(σ4) ≡ σ2m(w) +O(σ4)

Take the Kolmogorov forward equation,

(µw(w)g(w))
′ =

1

2
(σw(w)

2g(w))′′

Define g(·) by

(m(w)g(w))′ =
1

2
(s(w)g(w))′′

Expanding the drift and volatility,

(m(w)g(w))′ − 1

2
(s(w)g(w))′′ = (m(w)[g(w)− g(w)])′ − 1

2
(s(w)[g(w)− g(w)])′′ = O(σ2)

Hence, g(w) = g(w) +O(σ2). This completes the proof. □

Proof of Proposition 4. First, consider a constant ν(t ≡ ν). Take the pricing equation (6)

and linearize it with respect to ∆γ(t) ≡ γ(t) − γ. Take the first-order deviations ∆r(t), ∆ŵ(t),

∆p(w, t), ∆π(w, t), ∆µw(w, t) and ∆σw(w, t):

∆r(t)p(w) + r∆p(w, t)−∆pt(w, t) = −σ2∆π(w, t) + ∆µw(w, t)p
′(w) + µw(w)∂w∆p(w, t)

+ ∆σw(w, t)σw(w)p
′′(w) +

σw(w)
2

2
∂2
ww∆p(w, t)

Doing the same with the equation for p̂(t),

∆r(t)p̂+ r∆p̂(t)−∆p̂′(t) = 0

The expression for r(t) expands as

∆r(t) =
σ2ρ

(1 + q̂)ν

∫
∆π(x, t)dG(x)− σ2ρ

(1 + q̂)ν

∫
π(x)∆g(x, t)dx

Here ∆g(x, t) is the first-order deviation of g(w, t) from g(w) satisfying

∆gt(w, t) = −∂w(µw(w)∆g(w, t) + ∆µw(w, t)g(w)) + ∂2
ww

[
σw(w)

2∆g(w, t)

2
+ 2∆σw(w, t)σw(w)g(w)

]

10



The first-order deviations of the drift and volatility are

∆µw(w, t) = ∆r(t)w + λ̂∆w(t) +
2∆σw(w, t)σw(w)

w

∆σw(w, t) =
σw[∆pw(w, t)w −∆γ(t)ŵ − γ∆ŵ(t)]

[w + γŵ − wp′(w)]2

The firs-order deviation of the risk compensation is

∆π(w, t) =
∆γ(t)ŵ + γ∆ŵ(t)

[w + γŵ − wp′(w)]2
− 2π(w)(∆γ(t)ŵ + γ∆w(t)− w∆pw(w, t))

w + γŵ − wp′(w)

The first-order deviation of the special country’s wealth is

∆w(t) = −
∫

x∆g(x, t)dx

Now consider the second-order approximation around σ = 0. Let λ̂ = λ̂σ2 and λ = λσ2. First,

since ∆r(t) = O(σ2), ∆µw(w, t) = O(σ2) as well. Together with ∆σw(w, t) = O(σ), µw(w) =

O(σ2), and σw(w) = O(σ), this implies

r∆p(w, t)− ∂t∆p(w, t) = O(σ2)

This means ∆p(w, t) = O(σ2), leading to ∆pw(w, t) = O(σ2) and ∆pww(w, t) = O(σ2). Next,

∆µw(w) = O(σ2), ∆σw(w, t) = O(σ), µw(w) = O(σ2), and σw(w) = O(σ) imply ∆gt(w, t) = O(σ2)

and hence ∆g(w, t) = O(σ2). This means ∆w(t) = O(σ2), leading to

∆π(w, t) = −∆γ(t)ŵπ(w)2 +O(σ2)

Plugging this into the expression for ∆r(t),

∆r(t) = ∆γ(t)σ2 · ρŵ

(1 + q̂)ν

∫
π(x)2dG(x) +O(σ4) = ∆γ(t)σ2 · ρŵ

(1 + q̂)ν

∫
π(x)2dG(x) +O(σ4)

Using this in the differential equation for ∆p̂(t),

ρ∆p̂(t)−∆p̂′(t) = ∆γ(t)σ2 · ŵ

1 + q̂

∫
π(x)2dG(x) +O(σ4)

Since ∆γ(t) = δe−µγt and the terminal condition ∆p̂(t) −→ 0 as t −→ 0, this easily integrates:

∆p̂(t) = −∆γσ2 · ŵ

ρ+ µγ

· 1

1 + q̂

∫
π(x)2dG(x) +O(σ4)

11



The last remaining piece is the pricing equation for ∆p(w, t). Using the fact that ∆µw(w, t)p
′(w) =

O(σ4), µw(w)∆pw(w, t) = O(σ4), ∆σw(w, t)σw(w)p
′′(w) = O(σ4), and σw(w)

2∆pww(w, t) = O(σ4),

ρ∆p(w, t)− ∂t∆p(w, t) = ∆γ(t)σ2 · ŵ ·
[

1

1 + q̂

∫
π(x)2dG(x)− π(w)2

]
+O(σ4)

With ∆γ(t) = δe−µγt and the terminal condition ∆p(w, t) −→ 0 as t −→ 0, this integrates to

∆p(w, t) = −∆γ(t)σ2 · ŵ

ρ+ µγ

·
[

1

1 + q̂

∫
π(x)2dG(x)− π(w)2

]
+O(σ4)

This completes the proof. □

Proof of Corollary 3. The impact revaluation of the intermediary’s wealth is, up to o(σ3),

∆ŵ(0) =

∫
∆p(w, 0)ĥ(w)dG(w) + ∆p̂(0)q̂

= −∆γ(0)σ2

ρ+ µγ

[
1

1 + q̂

∫
π(w)2dG(w)

(∫
ĥ(w)dG(w) + q̂

)
−
∫

ĥ(w)π(w)2dG(w)
]

= −∆γ(0)σ2

ρ+ µγ

[∫
π(w)2dG(w)

∫
ĥ(w)dG(w)−

∫
π(w)2ĥ(w)dG(w) + q̂

1 + q̂
Ω(ŵ)

]
=

∆γ(0)σ2

ρ+ µγ

[
C
[
ĥ(w),π(w)2

]
− q̂

1 + q̂
Ω(ŵ)

]
Here Ω(ŵ) is given by

Ω(ŵ) =

[
1−

∫
ĥ(w)dG(w)

] ∫
π(w)2dG(w) ≤

∫
1

(w + γŵ)2
dG(w) ≤ ρ2

((1 + q̂)ν − (1− γ)ρŵ)2

Here the first inequality uses 0 ≤ ĥ(·) ≤ 1 and π(w) = (w + γŵ)−2, and the second uses Jensen’s

inequality: given ŵ, E[w] = (1 + q̂)ν/ρ − ŵ, and (w + γŵ)−2 is a convex positive function of x,

so E[(w + γŵ)−2] ≤ (E[w] + γŵ)−2 = ((1 + q̂)ν/ρ− (1− γ)ŵ)2. Since Ω(ŵ) is a bounded positive

function, for small enough q̂,

C
[
ĥ(w),π(w)2

]
− q̂

1 + q̂
Ω(ŵ) > 0

This follows from the fact that ĥ(w) = γŵπ(w) is a positive decreasing function, which is hence

positively correlated with another positive decreasing function π(w)2. This fact means that for

small enough q̂, ∆ŵ(0) has the same sign as ∆γ(0). This completes the proof. □
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Proof of Proposition 5. Start with γ(t). Using the derivations in the proof of Proposition 4,

∆π(w, t) = −∆γ(t)ŵπ(w) +O(σ2)

∆σw(w, t) = −∆γ(t)σŵwπ(w)2 +O(σ3)

∆µw(w, t) = ∆r(t)w +
2∆σw(w, t)σs(w)

w
+O(σ4)

= ∆γ(t)σ2 ·
[

ρŵw

(1 + q̂)ν

∫
π(x)2dG(x)− 2ŵwπ(w)3

]
+O(σ4)

Expanding the Kolmogorov forward equation,

∆gt(w, t) =− σ2∂w(m(x)∆g(w, t))− ∂w(∆µw(w, t)g(w)) +
σ2

2
∂2
ww(s

2∆g(w, t))

+ σ∂2
ww(∆σw(w, t)s(w)g(w)) +O(σ4)

This uses the fact that σw(w) = σs(w)+O(σ3) and µw(w) = σ2m(w)+O(σ4). From ∆µw(w, t) =

O(σ2) and ∆σw(w, t) = O(σ2), it follows that ∆gt(w, t) = O(σ2), meaning that ∆g(w, t) = O(σ2)

and hence ∆∂wg(w, t) = O(σ2) and ∆∂2
wwg(w, t) = O(σ2). With this and g(w) = g(w) +O(σ2),

∆gt(w, t) = −∂w(∆µw(w, t)g(w)) + σ∂2
ww(∆σw(w, t)s(w)g(w)) +O(σ4)

= ∆γ(t)σ2ŵ

[
2(wπ(w)3g(w))′ − ρ(wg(w))′

(1 + q̂)ν

∫
π(x)2dG(x)− (w2π(w)3g(w))′′

]
+O(σ4)

Since I assume that the economy converges to the steady state in the long run, the limit of ∆g(w, t)

as t −→ ∞ is zero. Using the functional form of ∆(t) and integrating between t and infinity,

∆g(w, t) = ∆γ(t)
σ2ŵ

µγ

[
(w2π(w)3g(w))′′ +

ρ(wg(w))′

(1 + q̂)ν

∫
π(x)2dG(x)− 2(wπ(w)3g(w))′

]
+O(σ4)

This defines Jg,γ in ∆g(w, t) ≡ Jg,γ(w)∆γ(t). Given ∆p(w, t) = Jp,γ(w)∆γ(t) from Proposition 4,

I can turn to pt and at:

pt =
1

P

∫
∆p(w, t)dG(w) +

1

P

∫
p(w)∆g(w, t)dw

=
∆γ(t)

P

[∫
Jp,γ(w)dG(w) +

∫
p(w)Jg,γ(w)dw

]
+O(σ4)

at = − 1

A

∫
∆θ(w, t)wdG(w) +

1

A

∫
(1− θ(w))w∆g(w, t)dw

=
∆γ(t)

A

[∫
(ŵp(w)π(w)2w − Jp,γ(w)π(w)w)dG(w)

]
+

∆γ(t)

A

∫ (
1− θ(w)− γ

∫
p(x)xπ(x)2dG(x)

)
wJg,γ(w)dw +O(σ4)

13



The last equality here uses the fact that

∆θ(w, t) =
∆p(w, t)

w + γŵ
− (∆γ(t)ŵ + γ∆ŵ(t))p(w)

(w + γŵ)2
+O(σ4)

= ∆p(w, t)π(w)− p(w)π(w)2(∆γ(t)ŵ + γ∆ŵ(t)) +O(σ4)

= ∆γ(t)
[
Jp,γ(w)π(w)− ŵp(w)π(w)2

]
+ γp(w)π(w)2

∫
x∆g(x, t)dx+O(σ4)

= ∆γ(t)

[
Jp,γ(w)π(w)− ŵp(w)π(w)2 + γp(w)π(w)2

∫
xJg,γ(x)dx

]
+O(σ4)

Simplify the expression for at by using the fact that θ(w) = p(w)π(w) and h(w) = wπ(w):

at =
∆γ(t)

A

∫
(ŵθ(w)− Jp,γ(w))h(w)dG(w)

+
∆γ(t)

A

∫ [
1− θ(w)− γ

∫
h(x)θ(x)dG(x)

]
wJg,γ(w)dw +O(σ4)

Now consider a shock to ∆ν(t). The assumption is that σν = σνσ
2, meaning that the shock ∆ν(t)

itself is of the second order. Take the first-order deviations ∆r(t), ∆ŵ(t), ∆p(w, t), ∆π(w, t),

∆µw(w, t) and ∆σw(w, t):

∆r(t)p(w) + r∆p(w, t)−∆pt(w, t) = ∆ν(t)− σ2∆π(w, t) + ∆µw(w, t)p
′(w) + µw(w)∂w∆p(w, t)

+ ∆σw(w, t)σw(w)p
′′(w) +

σw(w)
2

2
∂2
ww∆p(w, t) (A.3)

Expanding the equation for p̂(t),

∆r(t)p̂+ r∆p̂(t)−∆p̂′(t) = ∆ν(t)

The expression for r(t) expands as

∆r(t) =
∆ν ′(t)

ν
+

ρσ2∆ν(t)

(1 + q̂)ν2

∫
π(x)dG(x)

− ρσ2

(1 + q̂)ν

[∫
∆π(x, t)dG(x) +

∫
π(x)∆g(x, t)dx

]
(A.4)

Since ∆ν ′(t) = O(σ2), the interest rate deivation is of the same order: ∆r(t) = O(σ2). The

first-order deviation of the wealth density ∆g(x, t) solves

∆gt(w, t) = −∂w(µw(w)∆g(w, t) + ∆µw(w, t)g(w))

+ ∂2
ww

[
σw(w)

2∆g(w, t)

2
+ 2∆σw(w, t)σw(w)g(w)

]
(A.5)
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The first-order deviations of the drift and volatility are

∆µw(w, t) = ∆r(t)w + λ̂σ2∆w(t) +
2∆σw(w, t)σw(w)

w

∆σw(w, t) =
σw[∆pw(w, t)w − γ∆ŵ(t)]

[w + γŵ − wp′(w)]2
= σwπ(w)[∆pw(w, t)w − γ∆ŵ(t)] +O(σ3)

Since ∆µw(w, t) = O(σ2), all terms on the right in the pricing equation (A.3) are O(σ2). Hence

r∆p(w, t)−∆pt(w, t) = O(σ2)

This implies ∆p(w, t) = O(σ2), ∆pw(w, t) = O(σ2), and ∆pww(w, t) = O(σ2). Hence, all terms on

the right in equation (A.3) are of order O(σ4), except for ∆ν(t)− σ2∆π(w, t), where

∆π(w, t) =
γ∆ŵ(t)

[w + γŵ − wp′(w)]2
− 2π(w)(γ∆w(t)− w∆pw(w, t))

w + γŵ − wp′(w)
= O(σ2)

The equality follows from the fact that the first-order deviation of the special country’s wealth is

∆w(t) =
(1 + q̂)∆ν(t)

ρ
−

∫
x∆g(x, t)dx

But since ∆µw(w, t) = O(σ2), µw(w) = O(σ2), ∆σw(w, t) = O(σ), and σw(w), the expanded

Kolmogorov forward equation (A.5) implies ∆gt(w, t) = O(σ2) and hence ∆g(w, t) = O(σ2). This

leads to ∆ŵ(t) = O(σ2), which implies ∆π(w, t) = O(σ2) because ∆pw(w, t) = O(σ2) too.

Coming back to the expression for the interest rate in equation (A.4),

∆r(t) =
∆ν ′(t)

ν
+O(σ4)

The interest rate only reacts to consumption growth expectations in the second order. Since all

terms on the right in equation (A.3) are of order O(σ4) except for ∆nu(t),

ρ∆p(w, t)−∆pt(w, t) = ∆ν(t)− ν

ρ
· ∆ν ′(t)

ν
+O(σ4) = ∆ν(t) · µν + ρ

ρ
+O(σ4)

This uses ∆ν(t) = δνe
−µνt. Integrating,

∆p(t) =
∆ν(t)

ρ
≡ Jp,ν∆ν(t)

In the second order, prices only react to the expected discounted dividend changes.
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Returning to ∆g(w, t), ∆σw(w, t) = O(σ3) and ∆g(w, t) = O(σ2) imply

∆gt(w, t) = −∂w(∆µw(w, t)g(w)) +O(σ4) = −∆r(t)(wg(w))′ +O(σ4)

=
µν

ν
∆ν(t)(wg(w))′ +O(σ4)

Integrating between t and infinity and using the assumption on convergence,

∆g(w, t) = −(wg(w))′

ν
∆ν(t) +O(σ4) ≡ Jg,ν(w)∆ν(t) +O(σ4)

The expressions for ∆θ(w, t) is now

∆θ(w, t) =
∆p(w, t)

w + γŵ
− γ∆ŵ(t)p(w)

(w + γŵ)2
+O(σ4)

= ∆p(w, t)π(w)− p(w)π(w)2γ∆ŵ(t) +O(σ4)

= ∆ν(t)

[
Jp,ν(w)π(w)− p(w)π(w)2

γ(1 + q̂)

ρ

]
+ γp(w)π(w)2

∫
x∆g(x, t)dx+O(σ4)

= ∆ν(t)

[
Jp,ν(w)π(w)− p(w)π(w)2

γ(1 + q̂)

ρ
+ γp(w)π(w)2

∫
xJg,ν(x)dx

]
+O(σ4)

Plugging this into at and replacing θ(w) = p(w)π(w) and h(w) = wπ(w),

at = −∆ν(t)

A

∫ [
Jp,ν(w)π(w)− p(w)π(w)2

γ(1 + q̂)

ρ

]
wdG(w)

+
∆ν(t)

A

∫ [
1− θ(w)− γ

∫
p(x)xπ(x)2dG(x)

]
wJg,ν(w)dw +O(σ4)

=
∆ν(t)

A

∫ [
θ(w)

γ(1 + q̂)

ρ
− Jp,ν(w)

]
h(w)dG(w)

+
∆ν(t)

A

∫ [
1− θ(w)− γ

∫
θ(x)h(x)dG(x)

]
wJg,ν(w)dw +O(σ4)

The expression for pt is

pt =
∆ν(t)

P

[∫
Jp,ν(w)dG(w) +

∫
p(w)Jg,ν(w)dw

]
+O(σ4)

Collecting the results for the two shocks,

at = Ja,γ∆γ(t) + Ja,ν∆ν(t) +O(σ4)

pt = Jp,γ∆γ(t) + Jp,ν∆ν(t) +O(σ4)
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Here

Ja,γ =

∫
(θ(w)ŵ − Jp,γ(w))

h(w)

A
dG(w) +

∫ [
1− θ(w)− γ

∫
h(x)θ(x)dG(x)

]
w

A
Jg,γ(w)dw

Ja,ν =

∫
Jp,γ
A

(w)dG(w) +
∫

p(w)

A
Jg,γ(w)dw

Jp,γ =

∫ [
θ(w)

γ(1 + q̂)

ρ
− Jp,ν(w)

]
h(w)

A
dG(w) +

∫ [
1− θ(w)− γ

∫
θ(x)h(x)dG(x)

]
w

A
Jg,ν(w)dw

Jp,ν =

∫
Jp,ν
P

(w)dG(w) +
∫

p(w)

P
Jg,ν(w)dw

The statement of the proposition follows from solving the stochastic differential equations for the

shocks:

dγ(t) = µγ(γ − γ(t))dt+ σγ · dW (t)

dν(t) = µν(ν − ν(t))dt+ σν · dW (t)

These imply

γ(t) = (1− e−µγτ )γ + e−µγτγ(t− τ) +

∫ τ

0

e−µγsσγ · dW (t− s)

ν(t) = (1− e−µντ )ν + e−µντγ(t− τ) +

∫ τ

0

e−µνsσν · dW (t− s)

Taking the limit τ −→ ∞ completes the proof. □
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C Additional details for empirics.

I use the following panels provided by the IMF:

• Balance of Payments dataset:

– BFPA_BP6_USD: portfolio asset acquisition

– BFPL_BP6_USD: portfolio liability incurrence

– BFOA_BP6_USD: other asset acquisition

– BFOL_BP6_USD: other liability incurrence

• International Financial Statistics dataset:

– IAP_BP6_USD: portfolio assets

– ILP_BP6_USD: portfolio liabilities

– IAO_BP6_USD: other assets

– ILOFR_BP6_USD: other liabilities

– FIGB_PA: government bond yields

Figure A.1 shows the number of countries for which these data are available each year. Flow data

from the Balance of Payments dataset are generally available for a larger number of countries,

hence the lower numbers for the datasets of flows normalized by stocks.

Figure A.1: number of countries present in the sample of asset acquisition, liability incurrence,
asset acquisition over asset stock, liability incurrence over liability stock, and bond yields.

I combine portfolio and other assets into total private assets, and do the same for liabilities,

asset acquisition, and liability incurrence. I then apply the deseasoning procedure to the data

and compute the ratios acquisition to assets ait, acquisition to liabilities bit, and incurrence to

liabilities lit. To extract the principal components from acquisition and incurrence panels, I choose

the largest balanced panels. I then extract the principal components using two methods: by
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Figure A.2: Principal components of asset acquisition and liability incurrence extracted from
standardized and non-standardized panels.

standardizing each country’s serie and raw. The rationale for standardizing is that the principal

component will naturally be putting higher weights on countries with larger dollar flows, excluding

smaller and less developed countries with smaller asset positions. I use the principal components

of the standardized panels throughout. However, as Figure A.2 shows, the difference between the

two methods is not substantial.

Table 9: number of observations and R2 in all second-stage regressions: R2
G refers to regressions

on the assets-to-GDP ratio, and R2
AE refers to regressions on the advanced economy dummies.

N R2
G R2

AE N R2
G R2

AE

loadings on facq
t loadings on f inc

t

F acq
it 108 0.39 0.15 F acq

it 108 0.49 0.14

F inc
it 105 0.21 0.08 F inc

it 105 0.18 0.06

yit 47 0.08 0.02 yit 47 0.08 0.02

ait 106 0.04 0.03 ait 106 0.05 0.03

bit 107 0.08 0.04 bit 107 0.18 0.04

lit 103 0.06 0.04 lit 103 0.05 0.03

loadings on VIXt loadings on EBPt

F acq
it 108 0.40 0.10 F acq

it 108 0.49 0.13

F inc
it 105 0.25 0.07 F inc

it 105 0.25 0.09

yit 47 0.05 0.01 yit 47 0.07 0.02

ait 106 0.06 0.02 ait 106 0.04 0.01

bit 107 0.06 0.00 bit 107 0.22 0.01

lit 103 0.06 0.03 lit 103 0.07 0.04

I then complement the acquisition and incurrence principal components f acq
t and f inc

t with VIXt

and EBPt. These four series are my global factors. With six panels {F acq
it }, {F inc

it }, {yit}, {ait},
{bit}, and {lit}, I run regressions in two stages. First, I find country-specific loadings of each of
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the panel variables on each of the factors. I obtain 6× 4 = 24 loadings for every country in total,

keeping only countries for which the sample is long enough (20 or more quarters). This gives me 24

cross-sections of loadings. I complement these 24 cross-sections with average assets-to-GDP ratios

over the period 2015-2020, where the GDP data come from the World Bank, and the cross-section

of advanced economy dummies from the IMF.

I then run 24 second-stage regressions of country-specific loadings on their assets-to-GDP ratios,

and another 24 regressions of country-specific loadings on their advanced economy dummies. In

the main text, I present the 48 coefficients and the associated standard errors in Table 7 and

Table 8. Table 9 presents the number of observations and R2 for these regressions.
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