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1 Introduction

Firms’ investments in capital goods occur infrequently and in sizeable amounts, with positive

investments being more common than disinvestments, see Doms and Dunne (1998). Common

explanations for such “lumpy investment” behavior involve irreversibilities and fixed (convex)

costs of adjustment at the firm level, as in e.g. Bertola and Caballero (1994). The lumpy

nature of investment raises questions concerning the causes of the phenomenon and the

implications of the micro-lumpiness for the propagation of aggregate shocks, see Khan and

Thomas (2008); Winberry (2021); Baley and Blanco (2021).

A seminal contribution to this literature is the paper by Caballero and Engel (1999),

which assumes that the firm’s adjustment cost is drawn each period from a non-degenerate

distribution. Unlike simple fixed-cost problems giving rise to an Ss rule, where all investments

have the same size, the setup by Caballero and Engel (CE) gives rise to a smooth version

of the Ss rule: at every moment some firms will invest if the adjustment cost drawn is

sufficiently small. The setup by CE maps a set of primitives, involving the distribution of

the fixed costs and other deep parameters, into an observable (non-degenerate) distribution

of investment-sizes. Our paper adopts the CE setup and studies the inverse problem: starting

from the observed distribution of the size of investments, we aim to recover the primitives

that generate the data, in particular the distribution of the fixed costs associated to positive

and negative capital adjustments.

Our goal is to provide a tractable method to identify a high dimensional object, namely

the distribution of the adjustment costs, using data on the frequency and size of the firms’

investments. We illustrate the approach exploiting a large dataset of capital investment by

Italian firms, from several industries, over a 25 year period. We use the identified model to

quantify the capital adjustment costs and to document its asymmetric nature: disinvestment

is more costly than investment. This finding is not obvious: an asymmetric distribution of

investments might simply reflect a large negative drift in the law of motion of capital. The

1



results show that a large negative drift is indeed present in the data, but that accounting

for the observed investment patterns also requires large asymmetries in the adjustment cost

of capital. We also show that these asymmetries imply non-linearities for the propagation

of an aggregate productivity shock, making the impulse response dependent on the size and

sign of the shock.

The setup. We develop the analysis using Caballero and Engel (1999) setup, which as-

sumes that firms are subject to idiosyncratic productivity shocks. Firms use capital to

produce, and the optimal capital stock depends on the current productivity. Adjusting the

capital stock is assumed to be costly: with probability κ per unit of time the firm draws a

fixed cost ψ from a distribution G(ψ) in each period and decides whether to pay the cost

and adjust capital or continue to operate with the old capital stock. The setup generates

lumpy investment behavior. In particular we allow both the rate κi and the distribution Gi

to depend on the sign of the adjustment: i = u for investments and i = d for disinvestments.

These assumptions can rationalize that negative investments are much less frequent than

positive ones, and that their size distribution is markedly different in the data.

The setup is tractable in that the firm’s state is described by a scalar variable: the ratio

of capital to productivity, relative to the profit maximising ratio in the absence of frictions.

We call this variable the capital gap, and denote it by x. The gap is unobservable since

productivity is not recorded, and for this reason the primitives of the firm’s problem cannot

be simply read off the data. To recover such primitives, we analyze the optimal choices of

firms in conjunction with investment data. The problem of the firm yields a generalized

hazard function Λ(x), specifying the adjustment intensity as a function of the underlying

state x. The cross-sectional distribution of capital gaps, described by the density function

f(x), solves a differential equation that depends on Λ. The distribution f is not observable

but is tightly related to the observed size-distribution of investments, q(∆x). We illustrate

how to recover both Λ and f using data from the distribution q.
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This recovery procedure can in principle be done non-parametrically, using the probabil-

ity density of investments as an input. However this approach requires solving a second-order

differential equation complicated by the presence of drift in productivity and capital stock.

Another second-order differential equation then has to be solved to recover the underlying

distribution of adjustment costs. We suggest a less flexible procedure that simplifies the cal-

culations tremendously. Specifically, we break the observed distribution of investments into

bins and assume that the generalized hazard function Λ is constant within bins.1 This gives

us closed-form solutions for the differential equations and turns the problem of recovering

Λ and f into solving a linear system. The fundamental distribution of fixed costs, G(ψ), is

also easy to recover: it reduces to a discrete distribution with a finite number of mass points.

Identifying them requires to solve another linear system.

We illustrate the main results of the paper by applying the model to a panel of investment

data for Italian firms obtained from the Company Accounts Data Service (Centrale dei

Bilanci). The data cover a period of 25 years, from 1982 to 2006, and contain the information

about industry and region in which the firm operates, its assets, investment in tangible and

non-tangible assets as well as disinvestments.2 We use the data from 9 broad sectors to

compute the size distribution of investment q and to recover the generalized hazard function

Λ and the underlying distributions of fixed costs G, for each sector.

Main results. The results reveal that a substantial degree of asymmetry in the primitives

is needed to fit the data. The opportunity to downsize the capital stock arises less frequently,

a result that confirms the findings by Baley and Blanco (2021). This finding is driven by the

prevalence of positive investment in the data.3 Negative investment is also more expensive

1In practice, since the data come in the form of histograms, the distribution of investment within each bin
has to be ignored. Assuming that Λ is constant within bins is attractive from the standpoint of computational
efficiency. The resulting discrete distributions of fixed costs are easy to use in quantitative evaluations of
the model.

2This data have been used in Guiso and Schivardi (2007) and Guiso, Lai, and Nirei (2017).
3Table 3 in Baley and Blanco (2021) uses data on structures, which do not feature negative investments.

For this reason these authors end up calibrating an infinite cost of downward adjustments.
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on average, being associated to an average higher fixed cost and that arises less frequently

(κu > κd). Another feature of the recovered primitives is that the generalized hazard function

Λ increases as the firm gets further away from the optimal capital stock. The recovered

magnitude of the adjustment costs is comparable to the ones discussed in the literature, e.g.

by Caballero and Engel (1999).

We use the recovered primitives to study the impulse response of the economy to an

aggregate productivity shock. Specifically, we hit all firms with a multiplicative shock to

productivity. This changes everyone’s capital gap and triggers a wave of investment. We

then trace out the path of the average capital gap, which to the first order approximates the

aggregate capital-to-productivity ratio. We find that the cumulative impulse response (CIR)

of capital gaps is asymmetric around zero and non-linear in the size of the shock. Asymmetry

is natural to expect given that we recover different fixed cost distributions for positive and

negative investments as well as different arrival frequencies of investment opportunities. The

non-linearity in the size of the shock is a direct consequence of a non-constant generalized

hazard function.4

The model performance can be compared to two well-known benchmarks that are nested

by discrete distributions. The simple Calvo model is nested as a special case of a discrete

distribution of fixed cost with one mass point on zero. When an adjustment opportunity

arises, the firm always draws a zero fixed cost. The generalized hazard function is constant

and independent of x, meaning that firms are equally likely to adjust regardless of their

desired adjustment size.

Another benchmark is what we call a two-sided distribution of fixed costs. In this case,

adjustment opportunities for positive and negative investments may arise with different

4Suppose the generalized hazard function increases in the distance from the optimal gap. Consider an
aggregate shock to productivity that shifts the whole distribution of capital gaps away from the optimal
one. Then the average adjustment hazard faced by the bulk of the firm population is higher. It then takes
the economy less time to reset most of the gaps to the optimal value and come back to the steady-state
trajectory. See Cavallo, Lippi, and Miyahara (2023) for a similar idea applied to the context of sticky prices.
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frequencies, but the fixed cost drawn by the firms is always zero. This specification allows for

different propensity to invest depending on whether the firm has too much or too little capital.

However, conditional on the sign of desired adjustment, the incidence is still independent of

the desired adjustment size.

We estimate the Calvo model and the two-sided specification on the same data as the

full model. A first advantage of our approach is that it provides a characterization of the

costs of adjustment, whereas both Calvo and the two-sided specification are mute about the

size of the adjustment costs.

A second set of results concerns the implications for the economy’s response to an ag-

gregate shock. The CIR of the Calvo model is linear in the size of the shock. We find that

this model overestimates CIR relative to the baseline. This is intuitive since the generalized

hazard functions in the two models are linked. Specifically, the harmonic averages of the

two generalized hazard functions Λ have to be the same. In the full model, aggregate shocks

move the distribution of firms into regions with a higher-than-average Λ, triggering faster

adjustment. In the Calvo model, this is impossible, since Λ is constant.

The two-sided distribution overestimates CIR as well. Perhaps surprisingly, we find that

it fares worse than the simple Calvo model in many cases, especially for negative shocks

to productivity. The reason is that the two-sided model can capture asymmetry in Λ with

respect to size, so it promptly assigns a low value of Λ to negative investments. When the

economy gets a negative productivity shock, firms need negative investment, and in the two-

sided model, such opportunities are estimated to arrive very rarely. The economy then takes

longer to adjust than the Calvo economy.

For the same intuition, the two-sided model should generate faster adjustment for positive

shocks than the Calvo model, at least right after the shock hits. We establish this as a

theoretical result, showing that the slope of the impulse response function of capital gaps

right after the shock is higher in the two-sided model than in Calvo for positive productivity
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shocks and lower for negative ones. In the direct aftermath of the shock, the two-sided

distribution will always estimate a more sluggish response than Calvo for negative shocks and

a less sluggish one for positive shocks. Of course, this does not generalize to the comparison

of CIR between the two models, and we find that for large shocks the two-sided model

outperforms the Calvo model.

Related literature. A few papers have studied the inverse inference problem in a fixed-

cost model. Alvarez, Lippi, and Oskolkov (2022) study infrequent price adjustments through

the lenses of a menu-cost model that has several elements in common with the problem

studied here. A main difference with the present paper is that pricing behavior is quite

symmetric, i.e. the shape of the adjustments with a positive size is similar to the shape of

the negative adjustments. While symmetry provides a reasonable approximation for price-

setting behavior in low-inflation countries, such an assumption is clearly violated by the

investment data.5 A methodological novelty of this paper is to solve for the inverse mapping

in a problem where the distribution of adjustments is not symmetric. The solution we

propose is tractable and can be applied to other problems with asymmetries, such as price

setting with high inflation, portfolio management problems, as well as inventory problems.

Our analysis also relates to the recent paper by Baley and Blanco (2021) who study

a lumpy investment model where the fixed cost is either zero, with some probability, or

else equal to a constant (possibly different for positive and negative investments). The main

objective of that paper is to derive a mapping that connects the cumulative impulse response

of the economy to a set of observable steady-state moments, in the spirit of the sufficient

statistic approach. Their paper presents an empirical application that, among other things,

quantifies the shape of the adjustment costs from the observed size distribution of investments

based on a panel of Chilean data. One difference compared to our paper is that while their

5Symmetry occurs if the state has a small drift (low inflation) and the firm’s return function (profit) is
locally symmetric.
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main empirical application restricts the distribution of adjustment costs to have two values,

our model allows for a general shape of this distribution.

The paper is organized as follows: the next section describes the economic setup for the

investment problem that we consider and defines the optimal policy by the firms, given by

the generalized hazard function. Section 3 presents the main theoretical result of the paper,

an inverse mapping that allows us to recover the distribution of the fixed costs starting

from a given distribution of investments. Section 4 applies this result using a large panel of

data on investment by Italian firms. Section 5 uses the estimated investment hazards and

attempts a preliminary analysis of the effects of different distributions for the propagation

of aggregate shocks.

2 Setup

Firms use capital to produce a homogeneous good with a production function F (Kt, zt) =

z1−α
t Kα

t . Productivity zt evolves according to

d ln(zt) = µdt+ σdWt (1)

When uncontrolled, capital evolves according to

d ln(Kt) = −δdt (2)

Firms occasionally get an opportunity to invest. For that, they use the investment good,

which is the same as what they produce. The price of this good is normalized to one.

When an adjustment opportunity arrives, firms can take it at a fixed cost of investment

ψzt. With a Poisson intensity κd, they get an opportunity to adjust down and draw an

adjustment cost ψ. This cost is distributed with a cumulative distribution function Gd(·) on
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interval [0, ψd]. Analogously, an opportunity for adjusting up arrives with a Poisson intensity

κu. Upward adjustment costs are distributed according to Gu(·) on interval [0, ψu].

Value of the firm. We conjecture the following policy. Conditional on adjusting, they

always choose k∗zt as their new level of capital. If Kt > k∗zt and an opportunity arrives

to adjust down, the firms do it if the random cost draw ψ is low enough, satisfying ψ <

ψd(Kt/zt). If Kt < k∗zt and an opportunity arrives to adjust up, the firms do it if ψ <

ψu(Kt/zt). Here ψd(·) and ψu(·) are the downward and upward adjustment cutoff functions.

We guess and verify that only the ratioKt/zt matters for the adjustment decision. Specif-

ically, the downward adjustment cutoff function ψd maps [k∗,∞) to [0, ψd]. The upward

adjustment cutoff function ψu maps (−∞, k∗] to [0, ψu]. Appendix A provides details.

Let i ∈ {u, d} be a binary function that determines where the firm is relative to the

optimal point. If i = u, the firm is below the optimal capital and would like to adjust

upwards. If i = d, it will disinvest should the opportunity arrive. The value of the firm

depends on the capital-to-productivity ratio k ≡ K/z. Denoting ρ = r − µ − σ2/2 and

ν = r + δ, the Bellman equation in a stationary environment is

ρv(k) = kα − νk + (ρ− ν)kv′(k) +
σ2

2
k2v′′(k)

+
∑
i=u,d

1iκi

∫
max{v(k∗)− v(k)− ψ, 0}dGi(ψ) (3)

Here 1i indicates that the firm is in the region where it wants to adjust up or down. The

optimality condition for the choice of k∗ is v′(k∗) = 0.

The cutoff functions ψi(·) for i ∈ {u, d} are given by ψi(k) = v(k∗)− v(k). The general-

ized hazard function, which is the intensity of adjustment given the state k, is

λ(k) =
∑
i=u,d

1iκiG(ψi(k)) (4)

Equation (3) and equation (4) map the primitives (δ, µ, σ2, r, α) and (κi, Gi(·))i=u,d into
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generalized hazard λ(·). To obtain the inverse mapping, take the derivative of equation (3)

with respect to k:

(ν + λ(k))u(k) = αkα−1 − ν + (ρ− ν + σ2)ku′(k) +
σ2

2
k2u′′(k) (5)

Here u(k) = v′(k). Having recovered U(·), we can solve for (κi, Gi(·))i=u,d using

ψi(k) = v(k)− v(k∗) =

∫ k

k∗
U(t)dt (6)

The random menu cost primitives satisfy κd = limk→∞ λ(k), κu = limk→−∞ λ(k), and

κiGi(ψ) = λ((ψi)
−1[ψ]). Hence, having λ(·) and the set of parameters (δ, µ, σ2, r, α) is

enough to recover the primitivies of adjustment costs (κi, Gi(·))i=u,d.

It is convenient to work with x ≡ ln(k) and functions of this argument Λ(x) = λ(k) and

U(x) = u(k). Denoting x∗ ≡ ln(k∗), we have U(x∗) = 0. Equation (5) transforms into

(ν + Λ(x))U(x) = αe(α−1)x − ν − (µ+ δ)U ′(x) +
σ2

2
U ′′(x) (7)

The equation for Gi(·) and κi is

Λ(x) =
∑
i=u,d

κiGi(v(e
x)− v(ex

∗
)) =

∑
i=u,d

κiGi

(∫ x

x∗
U(t)etdt

)
(8)

In Appendix A, we provide details on the HJB equation (3) and include a more general

version of the model, where firms can always pay a fixed cost to adjust, and the occasionally

arriving opportunity decreases its value. In Appendix B, we show that this setup is equivalent

to one where firms rent capital instead of owning it. In Appendix C, we show the solution

for equation (7) under a specific assumption on the functional form of Λ(·) that makes it

piece-wise constant. This is the case we use in our empirical application in Section 4.
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3 Estimating the hazard function

Let f(·) denote the ergodic density of x = ln(K) − ln(z), where the uncontrolled x follows

a diffusion with drift −(µ + δ) and standard deviation σ. If Λ(·) is the generalized hazard

function for investment, in a steady state f(·) and Λ(·) satisfy a Kolmogorov forward equation

f(x)Λ(x) = (µ+ δ)f ′(x) +
σ2

2
f ′′(x) (9)

Productivity z is not observable, so f(·) and Λ(·) cannot be simply read from the data.

One needs to use the observed distribution and frequency of investments to recover them.

Upon observing an adjustment, we can record its size in logarithms, ∆x = ln(K+)− ln(K−),

whereK− andK+ are the values of capital stock right before and right after the change. This

equals the jump in capital gap: ln(K+)− ln(K−) = (ln(K+)− ln(z+))− (ln(K−)− ln(z−)).

Productivity ln(z−) and ln(z+) drops out, as z has continuous sample paths.

Let the distribution of recorded changes in log capital stock be Q(·) : R 7→ [0, 1]. Denote

the corresponding density by q(·). Then,

f(x)Λ(x) = Nq(x∗ − x) (10)

Here N is the frequency of adjustments. The interpretation of equation (10) is that the

number of adjustments of the size x∗−x per unit of time is equal to the number of firms who

have a capital gap x times the probability per unit of time for such firms to adjust. Crucial

here is that all firms choose exactly x∗ when they invest or disinvest.

It is convenient to re-center f and Λ around x∗. Define f̃(·) and Λ̃(·) by f̃(x) = f(x−x∗)
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and Λ̃(x) = Λ(x− x∗). For these functions, we have

f̃(x)Λ̃(x) = (µ+ δ)f̃ ′(x) +
σ2

2
f̃ ′′(x) (11)

f̃(x)Λ̃(x) = Nq(−x) (12)

In practice, estimation procedures use histograms, which pool observation within bins

and provide limited information on the tails. We propose a method to recover (f̃ , Λ̃) under a

functional form assumption that maximizes computational convenience taking into account

these data limitations. Specifically, we assume that Λ̃ is constant within each bin of the

observed adjustment histogram. Since the information on the functional form of Q within

bins is lost anyway, we choose a data-generating process that makes computations fast and

easily scales with the number of bins.

Formally, let positive investments be binned into U bins with the mass of Hj in each

bin. Since any investment observation x corresponds to a gap −x before adjustment, these

negative gaps fall into U bins Xj with boundaries {xj}−U≤j≤0, where x0 = 0 and x−U = −∞.

Accordingly, let the positive gaps corresponding to negative investment be pooled into D

bins Xj with boundaries {xj}0≤j≤D, where x0 = 0 and xD = ∞.

Assumption 1. The re-centered generalized hazard function Λ̃ is given by Λ̃(x) = λj for

x ∈ Xj, where Xj = (xj, xj+1] for −U ≤ j ≤ −1 and Xj = [xj−1, xj) for 1 ≤ j ≤ D.

Under this assumption, the model has the following parameters: the drift of capital gaps

µ+ δ, the volatility of productivity shocks σ, and U +D hazard levels λ = {λj}−U≤j≤D,j ̸=0.

We denote the set of parameters by P = (µ+ δ, σ2,λ).

The data provide a frequency of investments N and a histogram Q = {Qj}−D≤j≤U,j ̸=0 of

investment sizes. The recorded histogram Q contains measurement error and might differ

from the true histogram generated by the model. To formalize this, we denote the true data

by D = (N,H), where the histogram H = {Hj}−D≤j≤U,j ̸=0 is potentially different from Q.
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We next characterize the mapping P 7→ D.

3.1 Mapping parameters to the data

Under Assumption 1, the solution to equation (9) is a linear combination of two exponentials:

f̃j(x) = η1,je
ξ1,jx + η2,je

ξ2,jx (13)

The distribution of gaps over any Xj is given by f(x) = fj(x). The powers are

{ξ1,j, ξ2,j} =
−(µ+ δ)±

√
(µ+ δ)2 + 2σ2λj
σ2

(14)

Denote the vectors of these coefficients by ξ1 = {ξ1,j}−U≤j≤D,j ̸=0 and ξ2 = {ξ2,j}−U≤j≤D,j ̸=0.

The sets of coefficients η1,j and η2,j satisfy the following continuity conditions:

f̃j−1(xj) = f̃j(xj) for j ∈ {−U + 1, ...− 1} (15)

f̃j+1(xj) = f̃j(xj) for j ∈ {1, ...D − 1} (16)

f̃−1(0) = f̃1(0) (17)

f̃ ′
j−1(xj) = f̃ ′

j(xj) for j ∈ {−U + 1, ...− 1} (18)

f̃ ′
j−1(xj) = f̃ ′

j(xj) for j ∈ {1, ...D − 1} (19)

The probability density must be continuous, including at zero. It must also be differentiable

between all segments except for the junction at x = 0. In addition, f(·) must not explode

at infinity, and it must integrate to one:

lim
x→∞

f̃D(x) = lim
x→−∞

f̃−U(x) = 0 (20)∫ ∞

−∞
f̃(x)dx = 1 (21)
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The jump in the first derivative of f̃(·) at zero is due to the “reinjection” of firms: they

adjust capital gaps discretely, continually arriving at zero. The size of the jump in f̃ ′(·) is

lim
x→−0

f̃ ′
−1(x)− lim

x→+0
f̃ ′
1(x) =

2N

σ2
(22)

This can be shown by integrating equation (9) over the real line and using the statistical

fact that q(−x)N = Λ̃(x)f̃(x).

The conditions in equation (15), equation (16), equation (17), equation (18), equa-

tion (19), equation (20), and equation (21) provide 2(U + D) linear equations to solve for

2(U +D) unknowns η1 = {η1,j}−J≤j≤D,j ̸=0 and η2 = {η2,j}−J≤j≤D,j ̸=0. The next proposition

states this fact formally and uses it to establish the mapping from parameters to the data:

Proposition 1. Fix P : a (U + D)-dimensional vector λ with non-negative entries

and a pair (µ + δ, σ). The density of gaps is given by equation (13), where the coefficients

ξ1(P) and ξ2(P) are given by equation (14), and the coefficients η1(P) and η2(P) solve a

2(U +D)-dimensional linear system. The true data D = (N,H) are given by the functions

N = n(P) and H−j = hj(P) for −U ≤ j ≤ D with j ̸= 0:

n(P) :=
σ2

2
(η1,−1ξ1,−1 + η2,−1ξ2,−1 − η1,1ξ1,1 − η2,1ξ2,1) (23)

hj(P) :=
1

N

[
λjη1,j
ξ1,j

(eξ1,jxj+1 − eξ1,jxj) +
λjη2,j
ξ2,j

(eξ2,jxj+1 − eξ2,jxj)

]
(24)

We show how to construct the linear system for η1 and η2 in the proof. In practice, the

coefficients in this linear system only depend on parameters through ξ1 and ξ2, which need

to be computed first. As a corollary, we note a homogeneity property:

Corollary 1. The coefficients η1, η2, ξ1, and ξ2 and the histogramH are homogeneous

of degree zero in P = (µ+ δ, σ2,λ). The frequency N is homogeneous of degree one.
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This property means that the drift and variance of the underlying process and the ad-

justment hazard are only pinned down in levels by the observed frequency. Scaling them all

together scales the frequency without changing the histogram. In practice, it means that

we can set N = 1 in all equations to estimate the full set of parameters up to a common

constant without using the time dimension of the data and then scale the estimates using the

observed frequency. Another option is to fix σ2 or µ+ δ, optimize over all other parameters,

and then scale the estimates by the ratio of the observed frequency to that in equation (23).

3.2 Estimation

The generalized hazard function under Assumption 1 is fully encoded in a finite set of

numbers. It can be estimated by minimizing the error in equation (24) under one restriction:

the menu cost model implies that Λ̃(x) is non-decreasing for x > 0 and non-increasing for

x < 0.

In practice, this implies that the estimates λ̂ should satisfy λ̂j+1 ≥ λ̂j for j > 0 and

λ̂j−1 ≤ λ̂j for j < 0. Together with (µ̂, σ̂2), the total set of resulting estimates P̂ = (µ̂, σ̂2, λ̂)

solves the following minimization problem:6

P̂ = arg min
P

dist(H(P),Q) (25)

s.t. λj+1 ≥ λj for j > 0 (26)

λj−1 ≥ λj for j < 0 (27)

Here the true data H(P) are given by equation (24). The estimates P̂ correspond to a

frequency N̂ = n(P̂) given by equation (23). They have to be divided by N̂/N to be

consistent with the frequency N from the data.

Two main properties of the model are the asymmetry of the generalized hazard function

6Depreciation rate δ cannot be identified separately from µ, so we assume it is zero throughout the
exercise and then use external data sources to estimate it.
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and the fact that it increases in distance from zero. To gauge the role of these properties, we

additionally estimate simple parametric specifications that shut them down one at a time.

First, we fit a symmetric generalized hazard function that potentially increases in distance

from zero. We choose a simple power form to minimize the number of parameters. This

amounts to solving a version of the problem in equation (25):

P̂symmetric = arg min
{P,π1,π2}

dist(H(P),Q) (28)

s.t. λj = π1|θxj + (1− θ)xj−1|π2 for j > 0 (29)

λj = π1|θxj + (1− θ)xj+1|π2 for j < 0 (30)

The parameter θ ∈ (0, 1) determines at which point in (xj−1, xj) we evaluate λj for every j.

Optimization is over four numbers (π1, π2, µ+ δ, σ2). This specification ignores the asymme-

tries in adjustment costs, making disinvestment as easy as a positive investment. However,

the invariant distribution of capital gaps is still asymmetric due to drift µ + δ. The gener-

alized hazard function is increasing in distance from zero, which we ensure by imposing a

restriction π2 ≥ 0.

Second, we fit a two-sided distribution model with a generalized hazard function that is

constant on positive and negative half-lines but potentially asymmetric around zero. The

corresponding version of the problem in equation (25) is

P̂two-sided = arg min
{P,λu,λd}

dist(H(P),Q) (31)

s.t. λj = λd for j > 0 (32)

λj = λu for j < 0 (33)

Optimization here is over four numbers (λu, λd, µ + δ, σ2). We call this model a two-sided

distribution because the distribution of random menu cost has three points in its support:
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a zero cost that is available upon arrival of an investment opportunity and two different

(perhaps, infinite) costs for positive and negative adjustment that can always be paid. This

case is considered, for example, by Baley and Blanco (2021).

This model has a particularly simple closed-form solution for the density of capital gaps.

It is a single exponential function on either side of x = 0, as opposed to a sum of two

exponential with potentially different exponents and coefficients on each segment. This

automatically sets half of the coefficients ξ1(P) and ξ2(P) to zero, and the other half are all

equal to the same number. This follows from continuity and differentiability at all boundaries

between segments.

Finally, we fit the original Calvo model with one value for all λj:

P̂single-hazard = arg min
{P,λ}

dist(H(P),Q) (34)

s.t. λj = λ for all i, j (35)

We call this model a single-hazard one. The single hazard rate λ can be directly read off the

data since it is equal to the adjustment frequency. The remaining coefficients are then easily

computed given µ + δ and σ2. This model is nested by the symmetric benchmark if π2 = 0

and by the two-sided benchmark if λu = λd.

We next summarize these properties of the two-sided model and a regular Calvo model.

Proposition 2. Consider a two-sided distribution model and suppose it is parameterized

by P = (µ+ δ, σ2, λu, λd), with hazard of positive adjustments λj = λu for j < 0 and that of

negative adjustments λj = λd for j > 0. The coefficients η1(P) and η2(P) are

η1,i = η2,j =

(√
(µ+ δ)2 + 2σ2λu − µ− δ

)(√
(µ+ δ)2 + 2σ2λd + µ+ δ

)
σ2
(√

(µ+ δ)2 + 2σ2λu +
√

(µ+ δ)2 + 2σ2λd

) (36)
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and η2,i = η1,j = 0 for all i < 0 and j > 0. The frequency n(P) is

n(P) =

(√
(µ+ δ)2 + 2σ2λu − µ− δ

)(√
(µ+ δ)2 + 2σ2λd + µ+ δ

)
2σ2

(37)

If the model is further restricted to a single hazard λu = λd = λ, then n(P) = λ and

η1,i = η2,j =
λ√

(µ+ δ)2 + 2σ2λ
for i < 0, j > 0 (38)

with η2,i = η1,j = 0 for i < 0, j > 0.

These restricted models cannot produce a better fit than the full one, but it is interesting

to see how far from each other they are quantitative. One metric we will use to compare them

is the impulse response of the average investment gap to a one-time aggregate productivity

shock, which we compute in Section G after estimating the model on firm-level data.

Estimating the model on the same data implies, in particular, that they will be fitted

to the same frequency of adjustment. This establishes a connection between the recovered

generalized hazard functions.

Proposition 3. Consider two models that generate the same frequency of adjustments.

Let λ1 = {λj,1} and λ2 = {λk,2} define their respective generalized hazard functions, and let

H1 = {Hj,1} and H2 = {Hk,2} be the histograms of adjustments they induce. It holds that

∑
j

Hj,1

λj,1
=
∑
k

Hk,2

λk,2
(39)

In words, the Harmonic average of the generalized hazard function, weighted by the

histogram of adjustments, is the same across models. In particular, for a Calvo model with

generalized hazard λ and a two-sided model with hazards (λu, λd) the proposition implies
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that

1

λ
=

P{positive investment}
λu

+
1− P{positive investment}

λd
(40)

Here λu is the upward adjustment hazard in the two-sided model, and λd is the downward

one. A direct implication is that, if λu > λ, then λd < λ, so the Calvo model hazard is always

in between the hazards of the two-sided model. This has implications for the asymmetric

reaction of the economy to aggregate shocks, as discussed in Appendix G.

4 Panel Data on Investment in Italy.

For our analysis, we utilize panel data on Italian firms obtained from the Company Accounts

Data Service, Centrale dei Bilanci (CB). The data cover a period of 25 years, from 1982 to

2006, and provides information about the industry and region in which each firm operates,

its assets, investment in tangible and non-tangible assets, as well as disinvestments. These

data have been used by Guiso and Schivardi (2007) and Guiso et al. (2017).

On average, there are about 45,000 firms included in the data set in a particular year.

We calculate the net investment, I, by subtracting the disinvestment from the investment

in tangible assets. In the baseline results, we normalize the investment by the stock of the

illiquid assets that is given by total assets less financial and other liquid assets. This is our

measure of the firm’s capital. In the main text, we will refer to the illiquid assets simply

as “assets”, A. Importantly, A is recorded at the end of the period, when investments have

been made. Capital stock before investment is then A− I.

Our variable of interest is the log change in assets

∆x ≡ ln

(
A

A− I

)
= ln

(
1

1− I/A

)
(41)
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where I is recorded net investment and A − I is capital before adjustment, as described

above. Table 1 reports summary information sector-by-sector for the sample, using a 9-

sector classification.

It is apparent that the data is characterized by a significant presence of inaction. In a

typical year about one-fourth of the firms is inactive. We follow Cooper and Haltiwanger

(2006), as well as Baley and Blanco (2021), and consider as “zero investment” all investments

with an absolute size smaller than 1% of the firm’s capital.

The average size of the investment (relative to assets) is about 15%, and the majority of

the adjustments have a positive sign, i.e., the fraction of disinvestments is small in all sectors,

pointing to the presence of drift and the possibility of asymmetries in the adjustment costs.

The table also shows that there is significant variation across industries, both in the typical

size of investments and in the prevalence of inaction.

The histograms in Figure 1 describe the distribution of the size of the (non-zero) invest-

ments in each of the 9 industries considered. This distribution corresponds to the theoretical

measure Q(·) described in equation (10). The leftmost and rightmost bins in each graph

contain the entire tails of the observed distribution, which is why they are slightly larger

than the neighboring bins.
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Table 1: Summary statistics by industry

Industry # Firms Inactive Mean ∆x SD ∆x share ∆x < 0

Mining & Quarrying 814 0.239 0.133 0.347 0.053

Chemicals 5414 0.144 0.163 0.293 0.062

Metal & Machinery 13412 0.144 0.174 0.339 0.064

Food & Beverages 16346 0.156 0.161 0.328 0.067

Construction 7418 0.271 0.107 0.491 0.128

Retail 24589 0.200 0.143 0.407 0.090

Transportation 3529 0.212 0.145 0.396 0.102

Insurance 4659 0.383 0.124 0.464 0.087

Health & Beauty 2245 0.201 0.140 0.351 0.072

Total 78664 0.187 0.152 0.374 0.080

Notes: Investment is considered zero if the net investment to capital ratio is less than 1%
in absolute value. Inactive is the share of observations with zero investment. The mean
and standard deviation are computed for non-zero investments.

Figure 1: Distribution of non-zero investments.
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4.1 Calibrating the model to the data

Steady-state objects. Having estimated model parameters, we can reconstruct the steady-

state distribution of price gaps, the generalized hazard function, and the model-implied dis-

tribution of investments. Figure 2 shows the empirical histogram against the one generated

by the model for one particular sector from our data, “Metal & Machinery”. Panel (a)

refers to the unrestricted specification. For comparison, panel (b) shows the same for a

two-sided model, where Λ is restricted to two values: one for positive investments and one

for disinvestments. Panel (c) shows the symmetric benchmark.

(a) Data and the full model. (b) The two-sided benchmark. (c) The symmetric benchmark.

Figure 2: Data on investments and the histograms implied by the model. Full model on left
panel, restricted models on center and right panels.

One observation to make about Figure 2 is that all three models are able to capture the

form of the histogram quite closely. There is no qualitative difference between the steady-

state distributions of investments in the three specifications. The differences will be more

pronounced in the context of aggregate shocks, where the shape of the generalized hazard

function is key for dynamics.

Figure 3 illustrates the estimated generalized hazard function Λ̃ and the recovered steady-

state distribution f̃ . Panel (a) shows the unrestricted benchmark and the two-sided model

for comparison. Panel (b) does the same for the symmetric model. The corresponding figures
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for the rest of the sectors can be found in Appendix E.

The symmetric model is particularly far from the unrestricted benchmark in terms of the

underlying distribution of capital gaps f̃ . The reason is that imposing symmetry on Λ̃ forces

the model to overestimate Λ̃ for positive gaps, that is, for negative adjustments. This leads

to an underestimated f̃ for positive gaps since the model matches the observed density q(−x)

that is proportional to the product Λ̃(x)f̃(x). As a result, the symmetric model implies that

very few firms have a positive capital gap in the steady state.

The way in which the symmetric model generates this is through a relatively large neg-

ative drift in capital gaps and a relatively small volatility of idiosyncratic shocks to pro-

ductivity. Table 2 shows the estimated drift and volatility. Recall that the capital gap is

the log of capital-to-productivity ratio, x = log(K/z). The drift in capital gaps is equal to

−(µ+ δ) since −δ is the drift in log capital and µ is that of log productivity. It is larger in

absolute value in the symmetric benchmark, and the volatility is much smaller. This pattern

is consistent across sectors.

Table 2: Estimated drift and volatility for the three models

full model two-sided model symmetric model

µ+ δ 0.178 0.186 0.218

σ 0.272 0.294 0.062

Imposing symmetry is thus consequential for two aspects of the model. First, it strongly

affects the estimated parameters of the underlying productivity process. Second, it makes

the steady-state distribution much more asymmetric than the other two benchmarks.

4.2 Recovering adjustment costs

To recover the primitive distributions of adjustment costs Gi and arrival intensities κi, we

need the true hazard Λ instead of the re-centered version Λ̃(x) = Λ(x−x∗). The challenge is
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(a) Full model and two-sided benchmark. (b) Full model and symmetric benchmark.

Figure 3: Estimated generalized hazard Λ̃ and recovered steady-state distributions f̃ . The
solid line and the shaded distribution in the background correspond to the full model. Dashed
lines illustrate restricted models: two-sided on the left, symmetric on the right.

that x∗ is not observable and we need to solve for it. Our procedure relies on the optimality

condition for x∗: the marginal value function U satisfies U(x∗) = 0. We can guess x∗ to

obtain marginal value U from equation (7) and then update the guess based on this optimality

condition until convergence.

Specifically, having Λ̃ and a guess of x∗, we solve

(ν + Λ̃(x+ x∗))U(x) = αe(α−1)x − ν − (µ+ δ)U ′(x) +
σ2

2
U ′′(x) (42)

using the procedure described in Appendix C. This procedure takes advantage of the fact

that Λ̃ is piece-wise constant and turns solving a differential equation into solving a linear

system. We then update the guess of x∗ by finding the point at which U(x∗) = 0.

Piece-wise constant generalized hazard functions correspond to piece-wise constant dis-

tributions Gi and hence discrete sets of adjustment cost ψ. Take upward adjustments first.

They happen when the capital gap is negative, x < 0. It is straightforward to compute the
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arrival intensity κu = limx→−∞ Λ(x). To find the values of ψ with positive mass, use

Λ(x) = κuGu

(∫ x∗

x

U(t)etdt

)
(43)

The values of x at which Λ jumps map into values of ψ at which Gu jumps: for any such x,

the corresponding cost is ψ =
∫ x∗

x
U(t)etdt. The size of jumps in Gu corresponds to the size

of jumps in Λ scaled by κu. The case of downward adjustments is treated in the same way.

Figure 4 shows the recovered distributions for “Metal & Machinery”. The left panel plots

cumulative distribution functions Gu and Gd. We express adjustment costs ψ in percent of

(x∗)α − νx∗, the instantaneous profits at the optimal level of capital gap x∗. This is the

maximum attainable level of profits conditional on the environment. Firms would earn this

if their capital gap was always set to x∗.

The average adjustment costs for positive investments is equal to 5.5% of this profit,

and these opportunities arrive with an annual intensity of κu = 3.07. The opportunity for

a negative adjustment arrives with an annual intensity of κd = 0.36, and the average cost,

again, is 5.5% of maximal profits. This is an example of an industry where the average cost,

by chance, is similar for positive and negative investments, although the distribution Gu and

Gd are different, as Figure 4 shows.

The probability to draw a zero cost for positive adjustment is about 41%, and about the

same for negative adjustments. In this particular sector, the asymmetry between positive

and negative investments comes from the frequency of opportunities. Table 3 shows the

same quantities for other sectors. In most of them, the average size of the cost drawn for

positive and negative investments is different.
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Figure 4: Recovered distributions of adjustment cost ψ. Left panel: cumulative distribution
functions Gu (red) and Gd (blue) for costs of positive and negative adjustment. Center and
right panels: distributions of costs of positive and negative adjustments. Costs expressed in
percent of instantaneous profits at optimal capital gap (x∗)α − νx∗.

Table 3: Estimation results

Industry κu E[ψu] P{ψu = 0} κd E[ψd] P{ψd = 0}

Mining & Quarrying 1.874 2.292 0.623 0.277 4.009 0.371

Chemicals 2.277 3.057 0.507 0.558 3.832 0.254

Metal & Machinery 3.073 5.514 0.42 0.357 5.536 0.412

Food & Beverages 1.481 1.829 0.823 0.357 2.378 0.442

Construction 1.775 4.163 0.632 0.54 10.721 0.504

Retail 1.733 2.78 0.743 0.448 6.224 0.399

Transportation 1.827 3.709 0.671 0.53 5.914 0.406

Insurance 1.761 4.93 0.523 0.839 8.66 0.197

Health & Beauty 1.877 2.229 0.768 0.411 7.303 0.339
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Panels (b) and (c) on Figure 4 show the arrival frequencies of different adjustment cost

values ψ. These figures are histograms corresponding to Gu and Gd. For comparison, the

two-sided model would simply put all the mass on ψ = 0 on both panels. The symmetric

model would generate non-degenerate Gu and Gd but make them exactly the same. The

corresponding figures for all sectors are in Appendix F.

Besides the fundamental distributions of fixed costs drawn by firms, we can also compute

the distributions of costs actually paid. If gi(ψ) is the probability to draw ψ, the probability

ĝi(ψ) to pay it is proportional to gi(ψ)P{v(x∗)− v(x) ≥ ψ}. The cost is only paid by those

firms for which the value gain is sufficiently large.

Figure 5: Difference ĝi(ψ)−gi(ψ) between the distributions of costs paid and drawn. Positive
investments on the left panel, negative ones on the right. Costs expressed in percent of
instantaneous profits at optimal capital gap (x∗)α − νx∗.

Figure 5 plots the difference ĝi(ψ) − gi(ψ) between the distributions of costs that firms

pay and draw. In both sectors, the distribution of paid costs puts more weight on small ψ,

especially on zero. The average cost paid for a positive investment in “Metal & Machinery” is

just 0.08% of the maximum profit, which is 70 times lower than the average cost drawn. For

negative investments, the average paid is 0.36% of the maximum profit, a 15-fold decrease

relative to the average arriving cost.
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5 Impulse Response Functions

Consider the economy outside of the steady state. Keeping the decision rules of the firms

constant, the law of motion for the distribution of log capital gaps is

∂tf(x, t) = (µ+ δ)∂xf(x, t) +
σ2

2
∂2xxf(x, t)− Λ(x)f(x, t) (44)

The fact that the hazard function Λ(x) only depends on x reflects that the firms use the

steady-state decision rules. This equation is satisfied at all x ̸= x∗.

We consider aggregate productivity shocks that shift the productivity of all firms by the

same percentage. Concretely, every firm’s zt is replaced with eεzt. In terms of capital gaps, a

firm with x instantly moves to x− ε. A positive ε shifts capital gaps into negative territory.

This shock is permanent, and the productivity processes zt continue evolving as before.

This means that the initial condition for equation (44) is given by

f(x, 0) = f(x+ ε) (45)

Here f(x) with a single argument is the steady-state distribution, in a slight abuse of nota-

tion. The object of interest is the impulse response of the average capital gap given by

X(t;P) =

∫ ∞

−∞
(f(x, t)− f(x))xdx (46)

The cumulative impulse response C(P) is the accumulated deviation

C(P) =

∫ ∞

0

X(t;P)dt (47)

The argument P makes explicit the dependence of these objects on model parameters.

The impulse response X(t;P) captures excess capital in the economy. A positive X(t;P)
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means that firms are on average above their optimal scale in terms of capital stock. Con-

versely, a negativeX(t;P) means that there is too little capital. Cumulative impulse response

C(P) measures the economy’s speed of adjustment. A high absolute value of C(P) indicates

that firms are slow to reach their new optimal scale, and the economy overall has too much

or too little capital for long periods of time after the shock. In the economy without frictions,

both X(t;P) and C(P) would be zero.

The structure of equation (44) suggests a useful homogeneity property.

Proposition 4. Fix a parameterization P = (µ + δ, σ2,λ). For any α > 0, the impulse

responses satisfy

X(t;P) = X(α−1t;αP) (48)

C(P) = αC(αP) (49)

Here αP = (α(µ+ δ), ασ2, αλ) is a rescaling of P .

Scaling all parameters by a positive constant is exactly like changing the time units in

the model. Doubling the drift, the variance, and the adjustment rate makes convergence

back to the steady-state distribution twice as fast. Cumulative impulse response halves.

Corollary 1 states that doubling the parameters also doubles the steady-state adjustment

frequency. Taken together, these facts imply that the model can be first estimated under a

normalization N = 1, and the cumulative impulse response just needs to be scaled by the

true frequency in the data. Alternatively, the model can be estimated for a fixed σ2 or µ+ δ.

In this case, C has to be scaled by the ratio of the true frequency to that in equation (23).

In the single-hazard Calvo model, this frequency is equal to the hazard rate λ, and the

impulse response function has a simple exponential form:

Proposition 5. Consider a single-hazard parameterization P1 = (µ + δ, σ2, λ). The

impulse response to a one-time permanent aggregate productivity shock of the size ε is
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X(t;P1) = −εe−λt, and the cumulative impulse response is C(P1) = −ε/λ.

This impulse response does not depend on µ+δ and σ2. It is also symmetric and, in fact,

linear in ε. Both of these properties are lost when we generalize the model to a two-sided

distribution case and beyond.

In the general case of the piece-wise generalized hazard function, it is possible to char-

acterize the slope of the impulse response function at t = 0. This slope is not a complete

summary of the impulse response but it reflects how fast the economy adjusts initially. We

use it to illustrate asymmetries with respect to the sign of the shock. The proposition below

provides a general characterization, after which we demonstrate a tractable special case of

the two-sided model.

Proposition 6. Consider a model P = (µ + δ, σ2,λ) that generates an adjustment

frequency N . The slope of the impulse response to a productivity shock of size ε at t = 0 is

∂tX(0;P) = εN + (λ1 − λ−1)

∫ x∗+ε

x∗
f(x)(x− ε− x∗)dx (50)

+
∑
j<0

(λj − λj−1)

∫ xj+ε

xj

f(x)(x− ε− x∗)dx (51)

+
∑
j>0

(λj+1 − λj)

∫ xj+ε

xj

f(x)(x− ε− x∗)dx

This object is non-linear in ε and asymmetric around ε = 0, meaning that the economy’s

adjustment has fundamentally different speeds for positive and negative shocks. Alvarez

et al. (2022) defined the flexibility index F as the derivative of X ′(0) with respect to ε.

Proposition 6 implies the following form for this measure:

Corollary 2. The flexibility index is

F = N +
∑
j<0

(λj − λj−1)f(xj)(xj − x∗) +
∑
j>0

(λj+1 − λj)f(xj)(xj − x∗) (52)
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In the Calvo case, only N is left. This is intuitive because firms adjust for exogenous

reasons, and the economy’s speed of adjustment only depends on the arrival frequency of

these opportunities. In the two-sided case, this is also the only term that remains: small

aggregate shocks change the hazard of adjustments Λ(x) only for firms in close proximity of

x∗, where adjustments are small anyway.

We therefore have to go beyond small ε to illustrate the differences between the Calvo

and two-sided cases. Proposition 6 still leads to a tractable expression for the two-sided

model. Consider a Calvo model and a two-sided model with the same adjustment frequency

in the steady state. The differences in slopes depend

Corollary 3. Consider a single-hazard model P1 = (µ+ δ, σ2, λ) and a two-sided model

P2 = (µ̃ + δ̃, σ̃2, {λu, λd}) in which Λ(x) = λu for x < x∗ and Λ(x) = λd for x > x∗. If the

steady-state adjustment frequency is the same in these models,

X ′(0;P2) = X ′(0;P1) + (λu − λd)

∫ x∗

x∗+ε

(x− ε− x∗)f(x)dx if ε < 0 (53)

X ′(0;P2) = X ′(0;P1)− (λu − λd)

∫ x∗+ε

x∗
(x− ε− x∗)f(x)dx if ε > 0 (54)

Here f(·) is the steady-state distribution of investment gaps in the two-sided model.

Note that the result does not depend on the drift and volatility of the idiosyncratic

shocks. They may even be different in the two models.

The integral term is similar in equation (54) and equation (53). The sign in front of it

changes because the sign of the slope X ′(0) is different for positive and negative shocks. The

difference between X ′(0;P2) and X
′(0;P1) arises because, in the two-sided case, it matters

whether the shock shifts the bulk of the distribution toward a higher or lower adjustment

hazard. Suppose λd < λu, meaning that the negative investment hazard is lower. The two

models have the same frequency in steady state, so it must be that λd < λ < λu. If the
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shock to productivity is negative (ε < 0), firms are shifted to the positive gap territory.

Negative investment opportunities are taken less frequently in the two-sided model, λd < λ,

so investment gaps will stay high for longer than with a single hazard. The slopes of the

impulse responses are negative, and they are less negative in the two-sided model.

If, on the other hand, the productivity shock is positive (ε > 0), the two-sided economy

will adjust faster. Both slopes are positive since gaps are shifted primarily to the negative

territory and adjust upwards on aggregate. The slope in the two-sided model is higher

because positive investment opportunities in this model are taken more frequently, λu > λ.

The differences in equation (54) and equation (53) are second-order in ε, as follows from

Corollary 2 that shows first-order equivalence. The second-order terms are readily computed

by differentiation:

X ′(0;P2) = X ′(0;P1) + (λu − λd)f(x
∗)ε2 + o(ε2) (55)

In the following orders, the derivatives at ε = 0 do not exist in general, since f(x) does not

have derivatives at x = x∗.

5.1 Comparing impulse responses

We next trace out the impulse response functions for the nine sectors in our data. Figure 6

shows the evolution of the capital gap distribution after a 15% dislocation in “Metal &

Machinery”. We choose the size of the shock close to the average adjustment in the data.

Immediately after the shock, the whole density function moves to the left or to the right,

depending on the sign of ε. Right after t = 0, the density loses differentiability at x∗, which

is normalized to zero in the figure. This is because firms immediately begin reinjecting at

x∗. The density slowly reverts to the steady-state position as time progresses.
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(a) Positive shock to productivity. (b) Negative shock to productivity.

Figure 6: Evolution of the capital gap distribution after a positive and a negative shock to
productivity. The absolute size of the shock is 15% in both cases.

It is evident from Figure 6 that reversion is slower when the productivity shock is negative.

Opportunities to adjust capital stock downwards arrive less frequently, so positive capital

gaps persist. Positive aggregate shocks to productivity generate a fast build-up of capital,

and negative shocks unfold slowly.

We compare impulse responses across the three models, replacing our symmetric bench-

mark with a simple Calvo model. We do it for two reasons. First, in the Calvo model,

there is a closed-form solution for the impulse response functions, and there is full symmetry

with respect to the size of the shock. This illustrative special case is useful for highlighting

asymmetries in the other two specifications. Second, our estimates in the symmetric case

are quantitatively very close to Calvo model.
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(a) Positive shock to productivity. (b) Negative shock to productivity.

Figure 7: Impulse responses of the average capital gap x across models. Positive shock to
productivity on the left panel, negative on the right. The absolute size of the shock is 15%.

Figure 7 shows the impulse response functions in the full, two-sided, and symmetric

models. Unsurprisingly, responses are symmetric with respect to the sign of the shock in

the Calvo model. The generalized adjustment hazard is symmetric around zero, so firms

adjust with the same speed regardless of the initial dislocation. In the asymmetric models,

the response to a negative shock is more sluggish. This is because the recovered generalized

hazard is much lower for positive capital gaps.

The two-sided model shows a faster initial adjustment (around t = 0) than the symmetric

model for a positive shock. For a negative shock, the relationship reverses, and the symmetric

model economy adjusts faster. The symmetric model is quantitatively close to a simple Calvo

model, so the intuition is the same as in Proposition 6.

Table 4 shows cumulative impulse responses to positive and negative shocks of the same

absolute size. The symmetric model is very close to the Calvo specification, and the cu-

mulative impulse response (CIR) in it is almost symmetric. Whether it overestimates or

underestimates the CIR depends on the size of the shock. The two-sided model performs

better than the symmetric one for a positive shock and much worse for a negative one.
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Table 4: Cumulative impulse responses in the three models.

full model two-sided model symmetric model

15% 0.149 0.157 0.177

-15% -0.186 -0.224 -0.177

We next focus on cumulative impulse responses and explore the asymmetry and non-

linearity with respect to the size of the shock. Figure 8 plots cumulative impulse responses

for the baseline model, the two-sided model, and the Calvo model. We use the latter instead

of our symmetric benchmark because they are quantitatively very similar, and the plain

Calvo specification produces an impulse response with a simple formula.

Figure 8: CIR of capital gaps as a function of the shock to productivity.

The Calvo model, expectedly, produces a linear cumulative impulse response. The intu-

ition for this is simple: however far the distribution shifts, firms will not start adjusting more

frequently, and shocks of different sizes only differ along the intensive margin. Capital gaps

will spend the same time away from the steady-state distribution, but the dislocations will
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be larger for larger shocks. The CIR for any model other than Calvo is generically non-linear

in the size of the shock and asymmetric. Asymmetry is clearly seen on Figure 8.

For positive shocks, the Calvo model overestimates the CIR relative to the baseline. The

reason is that the generalized hazard functions are tightly connected between the two models.

They have to fit the same adjustment frequency, so the harmonic average of Λ weighted with

the observed distribution of adjustments in them has to coincide, according to Proposition 3.

In the baseline model, this means that Λ is lower than that in Calvo for x < 0 and higher

for x > 0. The shock thus shifts the distribution of firms into the territory with a higher

adjustment probability than in Calvo. This makes the economy adjust faster. For negative

shocks, the Calvo model underestimates the CIR since it is hardwired to impute a larger

arrival intensity for disinvestment opportunities than the less restricted models.

The two-sided distribution model also slightly overestimates the response. It does it to

a different extent depending on the sign of the shock. For negative shocks, overestimation

is more pronounced, since the two-sided model assigns a low adjustment hazard to negative

adjustments that does not grow with distance from x = x∗. Allowing for asymmetry in the

model without allowing for an increasing hazard leads to overshooting in this case.
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A Details of the model

In this section, we provide the details for the Hamilton-Jacobi-Bellman equation of the firms.
We do it for a slightly more general version of the model that allows for costly investment
even when the occasional Poisson opportunity has not arrived.

As in the main text, let i ∈ {u, d} denote where the firm is relative to the optimal point.
If i = u, the firm is below the optimal capital and would like to adjust upwards. If i = d,
it will not adjust upwards but will disinvest should the opportunity arrive. The Bellman
equation of the firm in the steady state is

rV (K, z) = z1−αKα − δK∂kV (K, z) +

(
µ+

σ2

2

)
z∂zV (K, z) +

σ2

2
z2∂zzV (K, z)

+
∑

i=u,d
1iκi

∫
max{V (k∗z, z)− k∗z − (V (K, z)−K)− ψ, 0}dGi(ψ) (A.1)

The optimality condition is

∂kV (k∗z, z) = 1 (A.2)

The value-matching conditions at all cutoffs are

V (k∗z, z)− k∗z − V (K, z) +K = ψi(K/z), for i ∈ {u, d} (A.3)

Suppose, for generality, that the firm always has a costly option to invest. It can pay ψu

to adjust up and ψd to adjust down. This introduces ultimate cutoffs kd and ku, at which
the firm adjusts even if the occasional Poisson opportunity has not arrived. Of course, these
cutoffs are infinite when ψu and ψd are, in which case we are back to the benchmark model.

If ψu and ψu are finite, the smooth-pasting conditions at these ultimate cutoffs are

∂zV (k∗z, z)− ∂zV (kiz, z) = ψi, for i ∈ {u, d} (A.4)

These smooth-pasting conditions hold if the ultimate cutoffs are not zero and infinite, re-
spectively. They are normally internal if the fixed cost the firm can always pay is finite.
Otherwise, there is no decision to be taken, so the smooth-pasting conditions need not hold.

Now introduce a function v(·) given by

V (K, z) = zv(K/z) +K (A.5)

The function v(·) measures the value of the firm net of the market value of its capital and
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adjusted for productivity. Note the following relations for its derivatives:

∂kV (K, z) = v′
(
K

z

)
+ 1 (A.6)

∂zV (K, z) = v

(
K

z

)
− K

z
v′
(
K

z

)
(A.7)

∂zzV (K, z) =
K2

z3
v′′
(
K

z

)
(A.8)

Plugging the relations for derivatives of V (·) into equation (A.1) and denoting k = K/z,

rzv(k) + rzk = zkα − δzkv′(k)− δzk +

(
µ+

σ2

2

)
(zv(k)− zkv′(k)) +

σ2

2
k2v′′(k)

+ z
∑

i=u,d
1iκi

∫
max{v(k∗)− v(k)− ψ, 0}dGi(ψ) (A.9)

Dividing everything by z and denoting ρ = r − µ− σ2/2 and ν = r + δ,

ρv(k) = kα − νk + (ρ− ν)kv′(k) +
σ2

2
k2v′′(k)

+
∑

i=u,d
1iκi

∫
max{v(k∗)− v(k)− ψ, 0}dGi(ψ) (A.10)

The optimality condition is v′(k∗) = 0. The value-matching and smooth-pasting are

v(k∗)− v(k) = ψi(k)a(k) (A.11)

v(k∗)− k∗v′(k∗)− v(ki) + kiv′(ki) = ψi (A.12)

for i ∈ {u, d}. Since v′(k∗) = 0, these two equations together imply v′(ki) = −ψi for
both i ∈ {u, d}. Taking the derivative of equation (A.10) with respect to k and denoting
u(k) = v′(k),

ρu(k) = αkα−1 − ν + (ρ− ν)u(k) + (ρ− ν + σ2)ku′(k) +
σ2

2
k2u′′(k)

=
∑
i=u,d

1iκi

∫
1{v(k∗)− v(k) ≥ ψ}u(k)dGi(ψ) (A.13)

Rearranging,(
ν +

∑
i=u,d

1iκiGi (v(k
∗)− v(k))

)
u(k) = αkα−1 − ν + (ρ− ν + σ2)ku′(k) +

σ2

2
k2u′′(k)
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The generalized hazard function here is

λ(k) =
∑
i=u,d

1iκiGi (v(k
∗)− v(k)) (A.14)

Plugging,

(ν + λ(k))u(k) = αkα−1 − ν + (ρ− ν + σ2)ku′(k) +
σ2

2
k2u′′(k) (A.15)

Boundary conditions for this equation are u(ku) = −ψu, u(kd) = −ψd, and u(k∗) = 0.
Again, the smooth-pasting conditions u(ku) = −ψu and u(kd) = −ψd need not hold if the
normal fixed cost is infinite. In this case, ku = 0 and kd = ∞, and the firm does not take a
decision that would call for smooth pasting.

Recovering v(·) from u(·) can start at k∗:

ρv(k∗) = (k∗)α − νk∗ +
σ2

2
(k∗)2u′(k∗) (A.16)

The rest can be obtained by integration:

v(k)− v(k∗) =

∫ k

k∗
u(x)dx (A.17)

Proof. (of Proposition 1). Conditions (15)-(21) contain exactly 2(U +D) equations that
are linear in {η1,j, η2,j}. Equation (21) can be rewritten as

1 =
−1∑

j=−U

(
η1,j
ξ1,j

(eξ1,jxj+1 − eξ1,jxj) +
η2,j
ξ2,j

(eξ2,jxj+1 − eξ2,jxj)

)

+
D∑
j=1

(
η1,j
ξ1,j

(eξ1,jxj − eξ1,jxj−1) +
η2,j
ξ2,j

(eξ2,jxj − eξ2,jxj−1)

)
(A.18)

Using this and equations (15)-(20), we can construct a 2(U +D)× 2(U +D) matrix A and
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a 2(U +D)× 1 vector b as follows. First, for −U + 1 ≤ j ≤ −1, set k = j + U + 1 and

A2k−1,2k−3 = −eξ1,j−1xj (A.19)

A2k−1,2k−2 = −eξ2,j−1xj (A.20)

A2k−1,2k−1 = eξ1,jxj (A.21)

A2k−1,2k = eξ2,jxj (A.22)

A2k,2k−3 = −ξ1,j−1e
ξ1,j−1xj (A.23)

A2k,2k−2 = −ξ2,j−1e
ξ2,j−1xj (A.24)

A2k,2k−1 = ξ1,je
ξ1,jxj (A.25)

A2k,2k = ξ2,je
ξ2,jxj (A.26)

Next, for 1 ≤ j ≤ D − 1, set k = j + U and

A2k−1,2k−1 = eξ1,jxj (A.27)

A2k−1,2k = eξ2,jxj (A.28)

A2k−1,2k+1 = −eξ1,j+1xj (A.29)

A2k−1,2k+2 = −eξ2,j+1xj (A.30)

A2k,2k−1 = ξ1,je
ξ1,jxj (A.31)

A2k,2k = ξ2,je
ξ2,jxj (A.32)

A2k,2k+1 = −ξ1,j+1e
ξ1,j+1xj (A.33)

A2k,2k+2 = −ξ2,j+1e
ξ2,j+1xj (A.34)

The remaining rows {1, 2, 2(D + U) − 1, 2(D + U)}. They encode (20), (17), and (21).
This is achieved by setting A1,1 = 1, A2(U+D),2(U+D) = 1, (A2,2U−1,A2,2U ,A2,2U+1,A2,2U+2) =
(1, 1,−1,−1), and

A2(U+D)−1,2k−1 =
1

ξ1,j
(eξ1,jxj+1 − eξ1,jxj1{j > −U}), k = j + U + 1, −U ≤ j ≤ −1 (A.35)

A2(U+D)−1,2k =
1

ξ2,j
(eξ2,jxj+1 − eξ2,jxj), k = j + U + 1, −U ≤ j ≤ −1 (A.36)

A2(U+D)−1,2k−1 =
1

ξ1,j
(eξ1,jxj − eξ1,jxj−1), k = j + U, 1 ≤ j ≤ D (A.37)

A2(U+D)−1,2k =
1

ξ2,j
(eξ2,jxj1{j < D} − eξ2,jxj−1), k = j + U, 1 ≤ j ≤ D (A.38)

All entries of the vector b are equal to zero, except for b2(U+D)−1, because this entry cor-
responds to the “integrating” row of A. The coefficients η are recovered by solving for the
vector η satisfying Aη = b and setting (η1,j, η2,j) = (η2(j+U)+1,η2(j+U)+2) for −U ≤ j ≤ −1
and (η1,j, η2,j) = (η2(j+U)−1,η2(j+U)) for 1 ≤ j ≤ D. □
Proof. (of Corollary 1). It follows from inspecting equation (23) and equation (24).
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B Alternative formulation

In this section, we establish equivalence between the problems of a firm that owns capital
and one that rents it at an interest rate r + δ. Suppose a firm rents capital and faces the
same adjustment costs. When there is no adjustment, capital simply depreciates at a rate δ,
and the firm makes rental payments (r + δ)Kt per unit of time. When it decides to change
the capital stock instead of simply letting it depreciate, it has to pay an adjustment cost
ψzt. The multiplier ψ is random.

Specifically, firms always have the option to pay fixed costs ψdzt or ψuzt and adjust
downwards and upwards, respectively. With a Poisson intensity κd, they get an opportunity
to draw a lower adjustment cost ψ that they can pay for adjusting down. This cost is
distributed with a cumulative distribution function Gd(·) on [0, ψd]. For adjusting up, they
get an opportunity to draw a lower cost with a Poisson intensity κu, and these costs are
distributed according to Gu(·) on [0, ψu].

The firms again follow a policy described by cutoffs. Conditional on adjusting, they
always choose K = k∗zt. When K > k∗zt, firms only adjust down, and do this if and only if
the corresponding cost reduction arrives and the new value drawn ψ satisfies ψ ≤ ψd(K/z).
Here ψd(·) is a cutoff function. When K > k∗zt, firms only adjust up, and do this if and only
if the corresponding cost reduction arrives and the new value drawn ψ satisfies ψ ≤ ψu(K/z).
The function ψd(·) maps [k∗, kd] to [0, ψd], and ψu(·) maps [ku, k∗] to [0, ψu]. The thresholds
kd and ku correspond to values of capital at which the firms adjust even without a cost
reduction.

The Bellman equation describing the value V (K, z) of such a firm is

rV (K, z) = z1−αKα − (r + δ)K − δK∂kV (K, z) +

(
µ+

σ2

2

)
z∂zV (K, z) +

σ2

2
z2∂zzV (K, z)

+
∑

i=u,d
1iκi

∫
max{V (k∗z, z)− V (K, z)− ψz, 0}dGi(ψ) (A.39)

The optimality condition is ∂kV (k∗z, z) = 0. The value-matching conditions are

V (k∗z, z)− V (K, z) = ψi(K/z)z, for i ∈ {u, d} (A.40)

The smooth-pasting conditions are

∂zV (k∗z, z)− ∂zV (kiz, z) = ψi, for i ∈ {u, d} (A.41)

Define a productivity-adjusted value function v(·) by

V (K, z) = zv(K/z) (A.42)
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Note the following relations for derivatives:

∂kV (K, z) = v′
(
K

z

)
(A.43)

∂zV (K, z) = v

(
K

z

)
− K

z
v′
(
K

z

)
(A.44)

∂zzV (K, z) =
K2

z3
v′′
(
K

z

)
(A.45)

Plugging this into equation (A.39) and denoting k = K/z,

rzv(k) = zkα − (r + δ)zk − δzkv′(k) +

(
µ+

σ2

2

)
(v(k)− kv′(k)) +

σ2

2
zk2v′′(k)

+ z
∑

i=u,d
1iκi

∫
max{v(k∗)− v(k)− ψ, 0}dGi(ψ) (A.46)

Dividing everything by z and denoting ρ = r − µ− σ2/2 and ν = r + δ,

ρv(k) = kα − νk + (ρ− ν)kv′(k) +
σ2

2
k2v′′(k) +

∑
i=u,d

1iκi

∫
max{v(k∗)− v(k)− ψ, 0}dGi(ψ)

This equation coincides with equation (3). Notice that v′(k∗) = v′(ku) = v′(kd) = 0, so all
decisions are exactly the same as in the baseline.
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C Recovering marginal value u(·)
In this section, we describe the algorithm to recover the marginal value function u(·). It is
convenient first to transform the capital-to-productivity ratio into its logarithm. Denoting
x = ln(k), transform u(·) : (0,∞) 7→ R into a function Υ(·) : R 7→ R such that Υ(x) = u(k).
Similarly, transform λ(·) : (0,∞) 7→ R into a function Λ(·) : R 7→ R such that Λ(x) = λ(k).

Rewriting equation (5),

ν(x)Υ(x) = αe(α−1)x − ν − (µ+ δ)Υ′(x) +
σ2

2
Υ′′(x) (A.47)

Here a slight abuse of notation is ν(x) = ν + Λ(x).
Now suppose Λ(·) is piece-wise constant. Specifically, let there be U +D+1 nodes given

by {yj} = {xj + x∗} such that Λ(·) is constant on any (xj−1 + x∗, xj + x∗) for 1 ≤ j ≤ D,
any (xj + x∗, xj+1 + x∗) for −U ≤ j ≤ −1:

• Λ(x) = λj on (xj−1 + x∗, xj + x∗) for 1 ≤ j ≤ D

• Λ(x) = λj on (xj + x∗, xj+1 + x∗) for −U ≤ j ≤ −1

The leftmost and rightmost nodes are infinite: x−U = −∞ and xD = ∞. Denote νj = ν+λj
and let Υj(·) be the part of Υ(·) defined on the segment j. The solution to equation (A.47)
on any segment j is

Υj(x) = η1,je
ξ1,jx + η2,je

ξ2,jx + θ1,je
(α−1)x + θ2,j (A.48)

The non-homogeneous part can be recovered immediately:

θ1,j =
α

νj − (1− α)(µ+ δ)− (1− α)2σ2/2
(A.49)

θ2,j = − ν

νj
(A.50)

The homogeneous part is a sum of two terms with four parameters per segment in total.
Exponent parameters are given by

{ξ1,j, ξ2,j} =
µ+ δ ±

√
(µ+ δ)2 + 2σ2νj
σ2

(A.51)

The weights η1,j and η2,j, combining into 2(U + D) unknowns, have to be recovered from
continuity and differentiability conditions on Υ(·). Specifically, for all j corresponding to
finite nodes, meaning −U < j < D including j = 0,

Υj−1(yj) = Υj(yj) (A.52)

Υ′
j−1(yj) = Υ′

j(yj) (A.53)

This yields 2(U+D−1) conditions. Two other equations are η1,−U = 0 and η2,D = 0 ensuring
that the homogeneous part of Υ(·) does not blow up at −∞ and ∞. The non-homogeneous
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part, which represents the marginal instantaneous returns to capital, is infinite at −∞, while
the homogeneous part represents the marginal value of the real option coming from the future
evolution of capital stock and is finite.

Given Υ(·), it is straightforward to recover u(k) = Υ(ln(k)) and integrate v(k)− v(k∗):

v(k)− v(k∗) =

∫ k

k∗
u(t)dt =

∫ x

x∗
Υ(x)exdx (A.54)

This function of k will be necessary to recover Gi from λ(k) = κiGi(v(k) − v(k∗)), where
i ∈ {u, d} indexes the direction of adjustment for which there is an opportunity.

Algorithm. The conditions on η1,j and η2,j combine into a linear system of dimensionality
2U + 2J . Let the vector η combine the unknowns in the following way: η2U+2j+1 = η1,j and
η2U+2j+2 = η2,j for all j such that −U ≤ j ≤ −1. For 1 ≤ j ≤ D, set η2U+2j−1 = η1,j and
η2U+2j = η2,j.

Let A be a square matrix of size (2U + 2D) × (2U + 2D) and b be a column vector
of length 2U + 2D. The (2j + 2U − 1)-th rows of A and b represent equation (A.52) for
−U ≤ j < −1:

η1,je
ξ1,jyj+1 + η2,je

ξ2,jyj+1 − η1,j+1e
ξ1,j+1yj+1 − η2,j+1e

ξ2,j+1yj+1 (A.55)

= (θ1,j+1 − θ1,j)e
(1−α)yj+1 + θ2,j+1 − θ2,j

The (2j + 2U)-th rows represent equation (A.53) for −U ≤ j < −1:

η1,jξ1,je
ξ1,jyj+1 + η2,jξ2,je

ξ2,jyj+1 − η1,j+1ξ1,j+1e
ξ1,j+1yj+1 − η2,j+1ξ2,j+1e

ξ2,j+1yj+1 (A.56)

= (θ1,j+1 − θ1,j)(1− α)e(1−α)yj+1

Then, the rows 2U − 1 takes care of continuity at y0 = x∗:

η1,−1e
ξ1,−1y0 + η2,−1e

ξ2,−1y0 − η1,1e
ξ1,1y0 − η2,1e

ξ2,1y0 (A.57)

= (θ1,1 − θ1,−1)e
(1−α)y0 + θ2,1 − θ2,−1

The row 2U takes care of differentiability at y0 = x∗:

η1,−1ξ1,−1e
ξ1,−1y0 + η2,−1ξ2,−1e

ξ2,−1y0 − η1,1ξ1,1e
ξ1,1y0 − η2,1ξ2,1e

ξ2,1y0 (A.58)

= (θ1,1 − θ1,−1)(1− α)e(1−α)y0

Then, the (2j + 2U − 3)-th rows of A and b represent equation (A.52) for 1 < j ≤ D:

η1,je
ξ1,jyj−1 + η2,je

ξ2,jyj−1 − η1,j−1e
ξ1,j−1yj−1 − η2,j−1e

ξ2,j−1yj−1 (A.59)

= (θ1,j−1 − θ1,j)e
(1−α)yj−1 + θ2,j−1 − θ2,j
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The (2j + 2U − 2)-th rows represent equation (A.53) for 1 < j ≤ D:

η1,jξ1,je
ξ1,jyj−1 + η2,jξ2,je

ξ2,jyj−1 − η1,j−1ξ1,j−1e
ξ1,j−1yj−1 − η2,j−1ξ2,j−1e

ξ2,j−1yj−1 (A.60)

= (θ1,j−1 − θ1,j)(1− α)e(1−α)yj−1

For the matrix A this means that, for −U ≤ j ≤ −1,

A2j+2U+1,2j+2U+1 = eξ1,jyj+1 (A.61)

A2j+2U+1,2j+2U+2 = eξ2,jyj+1 (A.62)

A2j+2U+1,2j+2U+3 = −eξ1,j+1yj+1 (A.63)

A2j+2U+1,2j+2U+4 = −eξ2,j+1yj+1 (A.64)

A2j+2U+2,2j+2U+1 = ξ1,je
ξ1,jyj+1 (A.65)

A2j+2U+2,2j+2U+2 = ξ2,je
ξ2,jyj+1 (A.66)

A2j+2U+2,2j+2U+3 = −ξ1,j+1e
ξ1,j+1yj+1 (A.67)

A2j+2U+2,2j+2U+4 = −ξ2,j+1e
ξ2,j+1yj+1 (A.68)

The vector b for −U ≤ j ≤ −1 is filled as follows:

b2j+2U+1 = (θ1,j+1 − θ1,j)e
(1−α)yj+1 + θ2,j+1 − θ2,j (A.69)

b2j+2U+2 = (θ1,j+1 − θ1,j)(1− α)e(1−α)yj+1 (A.70)

The rows 2J − 1 and 2J of the matrix A are

A2U−1,2U−1 = eξ1,−1y0 (A.71)

A2U−1,2U = eξ2,−1y0 (A.72)

A2U−1,2U+1 = −eξ1,1y0 (A.73)

A2U−1,2U+2 = −eξ2,1y0 (A.74)

A2U,2U−1 = ξ1,−1e
ξ1,−1y0 (A.75)

A2U,2U = ξ2,−1e
ξ2,−1y0 (A.76)

A2U,2U+1 = −ξ1,1eξ1,1y0 (A.77)

A2U,2U+2 = −ξ2,1eξ2,1y0 (A.78)

The vector b at these positions is filled as follows:

b2j+2U+1 = (θ1,1 − θ1,−1)e
(1−α)y0 + θ2,1 − θ2,−1 (A.79)

b2j+2U+2 = (θ1,1 − θ1,−1)(1− α)e(1−α)y0 (A.80)
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For 1 < j ≤ D, rows of the matrix A are

A2j+2U−3,2j+2U−3 = eξ1,jyj−1 (A.81)

A2j+2U−3,2j+2U−2 = eξ2,jyj−1 (A.82)

A2j+2U−3,2j+2U−1 = −eξ1,j−1yj−1 (A.83)

A2j+2U−3,2j+2U = −eξ2,j−1yj−1 (A.84)

A2j+2U−2,2j+2U−3 = ξ1,je
ξ1,jyj−1 (A.85)

A2j+2U−2,2j+2U−2 = ξ2,je
ξ2,jyj−1 (A.86)

A2j+2U−2,2j+2U−1 = −ξ1,j−1e
ξ1,j−1yj−1 (A.87)

A2j+2U−2,2j+2U = −ξ2,j−1e
ξ2,j−1yj−1 (A.88)

The vector b for 1 < j ≤ D is

b2j+2U−3 = (θ1,j−1 − θ1,j)e
(1−α)yj−1 + θ2,j−1 − θ2,j (A.89)

b2j+2U−2 = (θ1,j−1 − θ1,j)(1− α)e(1−α)yj−1 (A.90)

This fills the first 2U + 2D − 2 rows of A and b. The remaining two take care of η1,−U = 0
and η2,D = 0: A2U+2D−1,1 = A2U+2D+2,2J+2 = 1 and b2U+2D+1 = b2U+2D+2 = 0.
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D Proofs

Proof. (of Proposition 2). Recall that the density of gaps on a segment j is

f̃j(x) = η1,je
ξ1,jx + η2,je

ξ2,jx (A.91)

Consider a two-sided model. There are two segments in this case, (−∞, 0) with Λ(x) = λu
and (−∞, 0) with Λ(x) = λd. In the negative gap territory, the powers ξ1,−1 and ξ2,−1 are

{ξ1,−1, ξ2,−1} =
−(µ+ δ)±

√
(µ+ δ)2 + 2σ2λu
σ2

(A.92)

This implies η2,−1 = 0 so that f(·) does not diverge at −∞.
For positive gaps, the powers ξ1,1 and ξ2,1 are

{ξ1,1, ξ2,1} =
−(µ+ δ)±

√
(µ+ δ)2 + 2σ2λd
σ2

(A.93)

This implies η1,1 = 0 so that f(·) does not diverge at ∞.
The remaining two coefficients are η2,1 and η1,−1. They are equal to each other, η2,1 =

η2,1 = η, which is implied by the continuity at x = 0. To get the remaining condition on η,
recall that f̃(·) should integrate to one over the real line:

η

(
1

ξ1,−1

− 1

ξ2,1

)
= 1 (A.94)

Plugging,

η =

(√
(µ+ δ)2 + 2σ2λd + (µ+ δ)

)(√
(µ+ δ)2 + 2σ2λu − (µ+ δ)

)
σ2
(√

(µ+ δ)2 + 2σ2λu +
√

(µ+ δ)2 + 2σ2λd

) (A.95)

To get the aggregate frequency N , integrate the accounting identity Nq(−x) = f̃(x)Λ̃(x):

N = η

(
λu
ξ1,−1

− λd
ξ2,1

)
(A.96)

Plugging η,

N =
λuξ2,1 − λdξ1,−1

ξ2,1 − ξ1,−1

(A.97)
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Now use the fact that ξ2,1 and ξ1,−1 satisfy the following quadratic equations:

σ2

2
ξ22,1 + (µ+ δ)ξ2,1 = λd (A.98)

σ2

2
ξ21,−1 + (µ+ δ)ξ1,−1 = λu (A.99)

Plugging λd and λu from these expressions,

N =
σ2
2
ξ2,1ξ1,−1 =

(√
(µ+ δ)2 + 2σ2λd + (µ+ δ)

)(√
(µ+ δ)2 + 2σ2λu − (µ+ δ)

)
2σ2

This is the statement of the proposition. □
Proof. (of Proposition 3). Start with the accounting identity

Nq(−x) = Λ(x)f(x) (A.100)

Take the j-th segment on which Λ(x) is constant and integrate the over it:

Hj

λj
=

1

N

∫
j

f(x)dx (A.101)

Now summing over all these segments, ∑
j

Hj

λj
=

1

N
(A.102)

SinceN is the same in the two models by assumption, the harmonic averages of Λ(x) weighted
with adjustment probabilities on the left-hand side are the same too. □
Proof. (of Proposition 4). The impulse response function is given by

X(t;P) =

∫ ∞

−∞
(f(x, t)− f(x))xdx (A.103)

First, note that the steady-state distributions f(x) are the same under P = (µ + δ, σ2,λ)
and αP = (α(µ+ δ), ασ2, αλ) since f(x) that satisfies

Λ(x)f(x) = (µ+ δ)f ′(x) +
σ2

2
f ′′(x) (A.104)

also satisfies

αΛ(x)f(x) = α(µ+ δ)f ′(x) +
ασ2

2
f ′′(x) (A.105)

It is enough to show that f(x, α−1t;αP) = f(x, t;P) for all x and t > 0.
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To that end, write down the Kolmogorov forward equation for f(x, t;αP):

∂tf(x, t;αP) = α(µ+ δ)∂xf(x, t;αP) +
ασ2

2
∂xxf(x, t;αP)− αΛ(x)f(x, t;αP)

= α∂tf(x, t;P) (A.106)

Since the initial conditions coincide, f(x, 0;P) = f(x, 0;αP), we can integrate this to get

f(x, α−1t;αP) =

∫ α−1t

0

α∂sf(x, s;P)ds =

∫ t

0

∂τf(x, τ ;P)dτ = f(x, t;P) (A.107)

Hence, it holds that X(α−1t;αP) = X(t,P), and C(P) = αC(αP) trivially follows. □
Proof. (of Proposition 5). Recall the definition of the impulse response function X(t):

X(t) =

∫ ∞

−∞
(f(x, t)− f(x))xdx (A.108)

The time derivative is

X ′(t) =

∫ ∞

−∞
∂tf(x, t)xdx (A.109)

Take the Kolmogorov forward equation for f(x, t):

∂tf(x, t) + λf(x, t) = (µ+ δ)∂xf(x, t) +
σ2

2
∂xxf(x, t) (A.110)

Plugging this into equation (A.109),

X ′(t) = (µ+ δ)

∫ ∞

−∞
∂xf(x, t)xdx+

σ2

2

∫ ∞

−∞
∂xxf(x, t)xdx− λ

∫ ∞

−∞
f(x, t)xdx (A.111)

= (µ+ δ)

[
f(x, t)x

∣∣∣∞
−∞

−
∫ ∞

−∞
f(x, t)dx

]
+
σ2

2

[
∂xf(x, t)x

∣∣∣∞
−∞

−
∫ ∞

−∞
∂xf(x, t)dx

]
− λ

∫ ∞

−∞
f(x, t)xdx = −(µ+ δ) +

σ2x∗

2
(∂−x f(x

∗, 0)− ∂+x f(x
∗, 0))− λ

∫ ∞

−∞
f(x, t)xdx

Here ∂−x f(x
∗, 0) and ∂+x f(x

∗, 0) are the left and right derivatives of f(x, t) with respect to x.
Now take the Kolmogorov forward equation (A.110) and integrate it over the real line:∫ ∞

−∞
∂tf(x, t)dx+

∫ ∞

−∞
λf(x, t)dx =

σ2

2
(∂−x f(x

∗, 0)− ∂+x f(x
∗, 0)) (A.112)

The left-hand side here is equal to N , since the first integral is zero, and the second one
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integrates to λ = N . Plugging this back into the expression for ∂tX(t),

X ′(t) = −(µ+ δ) + x∗N − λ

∫ ∞

−∞
f(x, t)xdx (A.113)

Now take the Kolmogorov forward equation for the steady-state distribution and integrate
it over the real line: ∫ ∞

−∞
λf(x)dx =

σ2

2
(f ′

−(x
∗)− f ′

+(x
∗)) (A.114)

Now multiply the same equation by x and integrate over the real line:

λ

∫ ∞

−∞
f(x)xdx = (µ+ δ)

[
f(x)x

∣∣∣∞
−∞

−
∫ ∞

−∞
f(x)dx

]
+
σ2

2

[
f ′(x)x

∣∣∣∞
−∞

−
∫ ∞

−∞
f ′(x)dx

]
= −(µ+ δ) +

σ2x∗

2
(f ′

−(x
∗)− f ′

+(x
∗)) = −(µ+ δ) + x∗

∫ ∞

−∞
λf(x)dx

= −(µ+ δ) + x∗N (A.115)

Integrating Plugging this into equation (A.120),

X ′(t) = λ

∫ ∞

−∞
(f(x)− f(x, t))xdx = −λX(t) (A.116)

With the initial condition X(0;P) = −ε, we get X(t;P) = −εe−λt and C(P) = −ε/λ. □
Proof. (of Proposition 6). Recall the definition of the impulse response function X(t):

X(t) =

∫ ∞

−∞
(f(x, t)− f(x))xdx (A.117)

The time derivative is

X ′(t) =

∫ ∞

−∞
∂tf(x, t)xdx (A.118)

Take the Kolmogorov forward equation for f(x, t):

∂tf(x, t) + λf(x, t) = (µ+ δ)∂xf(x, t) +
σ2

2
∂xxf(x, t) (A.119)
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Plugging it,

X ′(t) = (µ+ δ)

∫ ∞

−∞
∂xf(x, t)xdx+

σ2

2

∫ ∞

−∞
∂xxf(x, t)xdx−

∫ ∞

−∞
Λ(x)f(x, t)xdx (A.120)

= (µ+ δ)

[
f(x, t)x

∣∣∣∞
−∞

−
∫ ∞

−∞
f(x, t)dx

]
+
σ2

2

[
∂xf(x, t)x

∣∣∣∞
−∞

−
∫ ∞

−∞
∂xf(x, t)dx

]
−
∫ ∞

−∞
Λ(x)f(x, t)xdx

= −(µ+ δ)−
∫ ∞

−∞
Λ(x)f(x, t)xdx+

σ2x∗

2
(∂−x f(x

∗, 0)− ∂+x f(x
∗, 0))

Integrating the Kolmogorov forward equation itself over the real line,∫ ∞

−∞
Λ(x)f(x, 0)dx =

σ2

2
(∂−x f(x

∗, 0)− ∂+x f(x
∗, 0)) (A.121)

Hence,

X ′(t) = −(µ+ δ)−
∫ ∞

−∞
Λ(x)f(x, t)(x− x∗)dx (A.122)

Integrating the Kolmogorov forward equation for the steady-state distribution,∫ ∞

−∞
Λ(x)f(x)dx =

σ2

2
(f ′

−(x
∗)− f ′

+(x
∗)) (A.123)

Integrating the same equation multiplied by x,∫ ∞

−∞
Λ(x)f(x)xdx = −(µ+ δ) + x∗

σ2

2
(f ′

−(x
∗)− f ′

+(x
∗)) (A.124)

Taken together, these two expressions imply∫ ∞

−∞
Λ(x)f(x)(x− x∗)dx = −(µ+ δ) (A.125)

Plugging this into the expression for X ′(t),

X ′(t) =

∫ ∞

−∞
Λ(x)(f(x)− f(x, t))(x− x∗)dx (A.126)
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Now, evaluating this at t = 0 and plugging the piece-wise constant Λ(·),

X ′(0) =
∑
j

λj

∫
∆j

(f(x)− f(x+ ε))(x− x∗)dx (A.127)

=
∑
j

λj

∫
∆j

f(x)(x− x∗)dx−
∑
j

λj

∫
∆j

f(x+ ε)(x− x∗)dx

=
∑
j

λj

∫ uj

lj

f(x)(x− x∗)dx−
∑
j

λj

∫ uj+ε

lj+ε

f(y)(y − ε− x∗)dy

=
∑
j

λj

(∫ uj

lj

f(x)(x− ε− x∗)dx−
∫ uj+ε

lj+ε

f(x)(x− ε− x∗)dx

)

+ ε
∑
j

λj

∫ uj

lj

f(x)dx

=
∑
j

(λj+1 − λj)

∫ uj+ε

uj

f(x)(x− ε− x∗)dx+ ε

∫ ∞

−∞
Λ(x)f(x)dx

Here ∆j is the segment on which Λ(x) = λj, and (lj, uj) are its left and right boundaries.
The last term is equal to εN , since Λ(x)f(x) = Nq(−x), and q(·) is a density that integrates
to one. This proves the proposition. □
Proof. (of Corollary 2). The corollary follows from differentiating X ′(0;P) with respect
to ε and evaluating the derivative at ε = 0.
Proof. (of Corollary 3). The corollary follows from setting all λj − λj+1 = 0 for j ≥ 1 and
λj−1 − λj = 0 for j ≤ −1 to evaluate the slope for the two-sided distribution. In the Calvo
model, all λj are equal to each other. The other summand is the same across the two models
by assumption.
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E Histograms and recovered hazards

This section presents fitted histograms and recovered generalized hazard functions along with
the underlying steady-state distributions of capital gaps for all sectors other than “Metal &
Machinery”. The graphs are organized in the same way as those for “Metal & Machinery”
on Figure 2. The left panel shows data on investments and the histograms implied by the
full model. The center and right panels show the same for two restricted benchmarks: the
two-sided and symmetric models.

(a) Data and the full model. (b) The two-sided benchmark. (c) The symmetric benchmark.

Figure A.1: Mining & Quarrying

(a) Data and the full model. (b) The two-sided benchmark. (c) The symmetric benchmark.

Figure A.2: Chemicals
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(a) Data and the full model. (b) The two-sided benchmark. (c) The symmetric benchmark.

Figure A.3: Food & Beverages

(a) Data and the full model. (b) The two-sided benchmark. (c) The symmetric benchmark.

Figure A.4: Construction

(a) Data and the full model. (b) The two-sided benchmark. (c) The symmetric benchmark.

Figure A.5: Retail
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(a) Data and the full model. (b) The two-sided benchmark. (c) The symmetric benchmark.

Figure A.6: Transportation

(a) Data and the full model. (b) The two-sided benchmark. (c) The symmetric benchmark.

Figure A.7: Insurance

(a) Data and the full model. (b) The two-sided benchmark. (c) The symmetric benchmark.

Figure A.8: Health & Beauty
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The figures below show the analogs of Figure 3 for sectors other than “Metals & Ma-
chinery”. They are organized in the same way: the left panel shows the generalized hazard
function and the implied steady-state distribution of capital gaps for the full model in solid
and for the two-sided benchmark in dash. The right panel does the same for the symmetric
benchmark instead of the two-sided.

(a) Full model and two-sided benchmark. (b) Full model and symmetric benchmark.

Figure A.9: Mining & Quarrying

(a) Full model and two-sided benchmark. (b) Full model and symmetric benchmark.

Figure A.10: Chemicals
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(a) Full model and two-sided benchmark. (b) Full model and symmetric benchmark.

Figure A.11: Food & Beverages

(a) Full model and two-sided benchmark. (b) Full model and symmetric benchmark.

Figure A.12: Construction

(a) Full model and two-sided benchmark. (b) Full model and symmetric benchmark.

Figure A.13: Retail
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(a) Full model and two-sided benchmark. (b) Full model and symmetric benchmark.

Figure A.14: Transportation

(a) Full model and two-sided benchmark. (b) Full model and symmetric benchmark.

Figure A.15: Insurance

(a) Full model and two-sided benchmark. (b) Full model and symmetric benchmark.

Figure A.16: Health & Beauty
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F Recovered distributions of adjustment costs

This section presents our estimates for the underlying random menu costs. We plot the
recovered distributions of adjustment costs for all sectors other than “Metal & Machinery”.
The graphs are organized in the same way as those for “Metal & Machinery” on Figure 4.
The left panel shows cumulative distribution functions Gu (in purple) and Gd (in green)
for costs of positive and negative adjustment. The center panel shows the arrival intensity
of costs of positive adjustments. The right panel shows the arrival intensity of costs of
negative adjustments. Costs are expressed in percent of instantaneous profits at optimal
capital (k∗)α − νk∗.

Figure A.17: Mining & Quarrying

Figure A.18: Chemicals

Figure A.19: Food & Beverages
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Figure A.20: Construction

Figure A.21: Retail

Figure A.22: Transportation

Figure A.23: Insurance
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Figure A.24: Health & Beauty
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G Impulse responses across models

This section presents impulse responses in the full model, the two-sided model, and the
regular Calvo model for all sectors other than “Construction”. The graphs are organized
in the same way as those for “Construction” on Figure 7. The left panel shows impulse
responses of the average capital gap x to a 5% productivity shock. The right panel shows
the same for a −5% shock.

(a) Positive shock to productivity. (b) Negative shock to productivity.

Figure A.25: Mining & Quarrying

(a) Positive shock to productivity. (b) Negative shock to productivity.

Figure A.26: Chemicals
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(a) Positive shock to productivity. (b) Negative shock to productivity.

Figure A.27: Metal & Machinery

(a) Positive shock to productivity. (b) Negative shock to productivity.

Figure A.28: Food & Beverages

(a) Positive shock to productivity. (b) Negative shock to productivity.

Figure A.29: Retail
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(a) Positive shock to productivity. (b) Negative shock to productivity.

Figure A.30: Transportation

(a) Positive shock to productivity. (b) Negative shock to productivity.

Figure A.31: Insurance

(a) Positive shock to productivity. (b) Negative shock to productivity.

Figure A.32: Health & Beauty
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H Data Appendix

The empirical analysis uses panel data on Italian firms obtained from the Company Ac-
counts Data Service (Centrale dei Bilanci, CB). The dataset covers a period of 25 years,
from 1982 to 2006, and contains information about industry and region in which the firm
operates, its assets, depreciation, investment in tangible and non-tangible assets as well as
the disinvestments. This data have been used in Guiso and Schivardi (2007) and Guiso et al.
(2005).

On average there are about 45,000 firms included in the data set in a particular year.
We calculate the net investment, I, by subtracting the disinvestment from the investment
in tangible assets. In the baseline results, we normalize the investment by the stock of the
illiquid assets, used as proxy for the firm’s capital.7 in the main text we will refer to the
illiquid assets simply as “assets”, A. We follow Cooper and Haltiwanger (2006), as well as
Baley and Blanco (2021), and consider as “zero investment” all investments with an absolute
size smaller than 1% of the assets.

We filter the data to remove outliers and observations with partial information.8 We
drop observations for firms with missing industry or region. We drop observations for agri-
cultural firms.9 Additionally, we drop firms for which we observe values of net investment
to assets ratio in top or bottom 1% of the distribution and firms for which we have only one
observation. This leaves us with 676,033 observations for 78,664 firms, i.e. on average 8.6
observations per firm.10

H.1 The size distribution of investment

We present the distribution of non-zero investments by industry in Figure 1. In accord to
the theory the investment figures are normalized by our measure of capital, so that the size
of investment is measured by I/(A−I) (observations with the investment to assets ratio less
than −1, about 0.85% of the total, are not shown in the graph). We observe an asymmetric
distribution where positive investments more common than negative ones. Note that the
modes of the distribution, for both positive and negative investment, are close to zero.

H.2 Summary Statistics

We present the baseline summary statistics of investment by industry in Table 1. We observe
that on average about 18.7% of observations correspond to zero investment. There is a
notable degree of heterogeneity in the degree of lumpiness, e.g. the construction almost
doubles the share of zero investment observation in the chemical industry. On average, when

7In the raw balance-sheet data, investment in tangible assets corresponds to V168, disinvestment to
V169, illiquid assets to V010, total assets to V023, depreciation to V121.

8Before filtering the data include 1,131,629 observations for 135,356 firms.
9For the duration analysis of the timing between non-zero investment of the firms, we also drop obser-

vations for firms with any gaps in the data.
10See the robustness section for an analysis of the importance of the trimming choices on the number of

observations.
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investing, the firm invests 15.2% of its assets. It is also notable that 8% of observations are
characterized by the negative net investment.

We also present the results concerning robustness of the summary statistics. Table 1
ignores the fact that for some of the firms we cannot calculate the duration statistics, i.e.
when the firm never invests or invests just once. In Table 6, we present the descriptive
statistics that excludes such firms. The results are quantitatively similar to the ones obtained
in the baseline Table 1. We also present the summary statistics that uses total assets instead
ofilliquid assets both for the whole sample in Table 7 and for the restricted sample in Table
8.

H.3 Durations

We present the summary statistics by industry concentrating on the summary statistics that
are calculated after we compute durations. The duration is measured in years and computed
as a time between two consecutive non-zero investments. For example, if a firm invests every
single year, the duration for that firm always equals 1. If a firm invested in 1990 and then did
not invest until 2000, the duration for such firm is 10. Effectively, the number of durations
for each firm equals a number of years in which the firm invests minus one. Thus, all firms
that invest only once are not included in the summary statistics of duration.

To compute the statistics, we use two different ways to aggregate the observations –
industry-level and firm-level aggregation. To illustrate the difference between these two
approaches, let us consider a simple example of industry with 2 firms in it. We would like to
calculate the mean duration between consecutive investments. Durations for each firm are
presented in the Table below.

Firm Durations
A 1, 1
B 5, 5, 5, 5, 5, 5

Firm-level approach to aggregation proceeds as follows. First, we calculate mean duration
for each firm – 1 and 5 for firms A and B respectively. Then, to obtain Eτ we calculate the
mean for the numbers we’ve obtained, i.e. (1 + 5)/2 = 3. Thus, all firms have equal weight
when we calculate Eτ .

Industry-level aggregation works a bit different. First, we create the vector of durations
by concatenating all the durations we observe for the industry, i.e. (1, 1, 5, 5, 5, 5, 5, 5). Then,
we calculate mean value for this vector, i.e. Eτ = (1·2+5·6)/8 = 4. Essentially, this approach
uses for a firm the weight proportional to the share of observations belonging to this firm
out of total number of observations in the industry.

Baseline results in Table 5 rely on the industry-level aggregation, i.e. we weigh the firms
based on the number of observations for the firm. We also show the unweighted (firm-level
approach) results presented in Table 9.

We also present the histograms of durations for the whole dataset in Figure A.33 and
separately for every industry in Figure A.34. We exclude financial industry from both
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graphs because of the low number of observations We observe the exponential decay in
the distribution of durations between two consecutive investments.

Table 5: Summary statistics of duration by industry

Industry # Firms Eτ SD(τ) Cov(τ, I/A) Drift
Mining & Quarrying 609 1.039 0.238 -0.007 0.127
Chemicals 4950 1.043 0.246 -0.004 0.157
Metal & Machinery 12224 1.039 0.232 -0.006 0.167
Food & Beverages 14807 1.052 0.272 -0.006 0.154
Construction 5689 1.093 0.401 -0.009 0.101
Retail 21173 1.074 0.330 -0.005 0.133
Transportation 2973 1.072 0.342 -0.007 0.137
Insurance 2857 1.082 0.409 -0.009 0.121
Health & Beauty 1858 1.047 0.260 -0.005 0.136
Total 67227 1.059 0.297 -0.006 0.145
Notes: Duration τ are calculated as the difference in years of two consecutive investments
and is measured in years. The firm-level statistics are weighted proportional to the num-
ber of observation for each firm. Investment is considered zero if the net investment to
assets ratio is less than 1% in absolute value. Eτ is the sample mean of a pause between
two consecutive non-zero investments (τ). SD(τ) is the sample standard deviation of the
pause between two consecutive non-zero investments. Cov(τ, I/A) is the sample covari-
ance between investment to assets ratio and the pause between two consecutive non-zero

investments. Drift is calculated as
E(I/A|I/A > 0)

E(τ)
.

H.4 Robustness

Figure A.35 shows the effects of the alternative threshold choices for the trimming of outliers.
The benchmark we choose, following the literature, is to trim the top and bottom 1% of the
distribution of I/A. Alternative thresholds to the benchmark of 1% are considered on the
horizontal axis. The vertical axis shows the fraction of observations that are dropped as the
threshold increases.
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Figure A.33: Histogram of duration between two investments
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Figure A.35: The effect of alternative thresholds for the “outlier” definition

Note. Percent of observations dropped is calculated for every threshold in the
investment to assets ratio with a step of 0.05%. The threshold shows the lower
and upper quantiles of the I/A ratio distribution for which the firms with any
observations below lower or above upper quantiles are dropped. Note that if a firm
is an outlier in one year, all observations for such firm are dropped.
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Figure A.36: Robustness: Distribution of non-zero I/A ratios using total assets.

xxxiv



0
10

20
30

0
10

20
30

0
10

20
30

-.4 -.2 0 .2 .4 -.4 -.2 0 .2 .4 -.4 -.2 0 .2 .4

Mining & Quarrying Chemicals Metal & Machinery

Food & Beverages Construction Retail

Transportation Insurance Health & Beauty

Pe
rc

en
t

Investment/assets ratio, 0 for I/A < 1% in absolute value

Distribution of non-zero I/A ratio by industry

Figure A.37: Robustness: Distribution of non-zero I/A ratios by industry using total assets.

Table 6: Robustness: Summary statistics by industry – restricted durations sample

Industry # Firms Share inactive Mean non-zero I/A SD non-zero I/A Share negative
Mining & Quarrying 609 0.166 0.132 0.347 0.057
Chemicals 4950 0.134 0.164 0.289 0.062
Metal & Machinery 12224 0.134 0.174 0.338 0.064
Food & Beverages 14807 0.144 0.162 0.325 0.068
Construction 5689 0.219 0.110 0.478 0.134
Retail 21173 0.180 0.143 0.404 0.091
Transportation 2973 0.186 0.147 0.393 0.104
Insurance 2857 0.230 0.131 0.450 0.101
Health & Beauty 1858 0.167 0.143 0.347 0.073
Total 67227 0.162 0.153 0.369 0.081
Notes: Only firms that invest at least twice are included as for them the duration can be calculated. Investment
is considered zero if the net investment to assets ratio is less than 1% in absolute value. Assets are defined as
illiquid assets only. Share inactive is a share of observations with zero investment. The mean and standard
deviation of the net investment to assets ratio is presented for non-zero investments only. Share negative is a
share of observations with negative investment.
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Table 7: Robustness: Summary statistics by industry – normalizing by total assets

Industry # Firms Share inactive Mean non-zero I/A SD non-zero I/A Share negative
Mining & Quarrying 752 0.385 0.071 0.080 0.035
Chemicals 4990 0.255 0.055 0.069 0.046
Metal & Machinery 13004 0.307 0.049 0.065 0.046
Food & Beverages 15751 0.330 0.051 0.068 0.047
Construction 7776 0.540 0.035 0.074 0.077
Retail 25025 0.529 0.037 0.068 0.052
Transportation 3259 0.437 0.050 0.083 0.067
Insurance 3275 0.534 0.038 0.072 0.054
Health & Beauty 2076 0.365 0.055 0.074 0.048
Total 75931 0.410 0.046 0.069 0.052
Notes: Assets are defined as total assets instead of illiquid assets used in the baseline. Investment is considered
zero if the net investment to assets ratio is less than 1% in absolute value. Share inactive is a share of observations
with zero investment. The mean and standard deviation of the net investment to assets ratio is presented for
non-zero investments only. Share negative is a share of observations with negative investment.

Table 8: Robustness: Summary statistics by industry – total assets and restricted sample

Industry # Firms Share inactive Mean non-zero I/A SD non-zero I/A Share negative
Mining & Quarrying 401 0.186 0.072 0.079 0.044
Chemicals 4244 0.228 0.055 0.069 0.047
Metal & Machinery 10616 0.273 0.049 0.065 0.048
Food & Beverages 12770 0.294 0.051 0.068 0.049
Construction 4154 0.415 0.036 0.073 0.094
Retail 16248 0.453 0.037 0.068 0.059
Transportation 2151 0.352 0.051 0.082 0.074
Insurance 1726 0.386 0.039 0.072 0.067
Health & Beauty 1411 0.279 0.056 0.074 0.052
Total 53728 0.343 0.047 0.069 0.056
Notes: Assets are defined as total assets instead of illiquid assets used in the baseline. Only firms that invest
at least twice are included. Investment is considered zero if the net investment to assets ratio is less than 1%
in absolute value. Share inactive is a share of observations with zero investment. The mean and standard
deviation of the net investment to assets ratio is presented for non-zero investments only. Share negative is a
share of observations with negative investment.
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Table 9: Robustness: Summary statistics of duration by industry – unweighted

Industry # Firms Eτ SD(τ) Cov(τ, I/A) Drift
Mining & Quarrying 609 1.078 0.088 -0.015 0.123
Chemicals 4950 1.060 0.119 -0.003 0.154
Metal & Machinery 12224 1.051 0.107 -0.004 0.166
Food & Beverages 14807 1.066 0.138 -0.003 0.152
Construction 5689 1.103 0.191 -0.005 0.100
Retail 21173 1.085 0.173 -0.003 0.132
Transportation 2973 1.077 0.166 -0.004 0.136
Insurance 2857 1.108 0.174 -0.001 0.118
Health & Beauty 1858 1.059 0.109 -0.002 0.135
Total 67227 1.074 0.147 -0.003 0.143
Notes: Duration τ are calculated as the difference in years of two consecutive investments
and is measured in years. The firm-level statistics are not weighted. Investment is consid-
ered zero if the net investment to assets ratio is less than 1% in absolute value. Eτ is the
sample mean of a pause between two consecutive non-zero investments (τ). SD(τ) is the
sample standard deviation of the pause between two consecutive non-zero investments.
Cov(τ, I/A) is the sample covariance between investment to assets ratio and the pause

between two consecutive non-zero investments. Drift is calculated as
E(I/A|I/A > 0)

E(τ)
.
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