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Abstract

I develop a heterogeneous-country model of the world economy to study the distributional
impact of aggregate capital flight episodes. A global intermediary borrows from all countries
and invests in their risky assets. Wealth heterogeneity between countries arises endogenously
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to the intermediary’s risk-taking capacity generates global capital flight. Investors from rich
countries use their external savings to replace foreign demand for domestic assets. These
countries experience a “retrenchment” event: a sizable fall in outward flows. Their risky
assets appreciate on impact. In poor countries, investors cannot replace foreign demand
without a sharp rise in risk premia. Their asset markets adjust through prices rather than
quantities, and prices fall. Estimating the model, I find that global financial shocks explain
a quarter of the time-series variation in aggregate capital flows and a third of the variation
in the relative performance of assets in advanced economies compared to emerging markets.
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1 Introduction

There is an aggregate cycle in international capital flows and asset prices. One factor explains

20% of the variation in gross capital flows across the world. This factor is strongly correlated

with an equally powerful dominant factor in asset prices and various measures of global risk-taking

capacity. In booms, when asset prices are high, investors tend to accumulate foreign holdings. In

global downturns, they sell foreign assets and shift their portfolios toward domestic markets, which

is what the literature calls “retrenchment”.

Countries are not equally exposed to the global cycle. Emerging markets and developing

economies are especially strongly affected by changes in the risk appetite of foreign investors.

Asset prices are generally more volatile in these countries. At the same time, gross capital flows

tend to be more strongly correlated with global aggregates in advanced economies. In downturns,

investors from advanced economies sell more of their foreign assets than those from emerging

markets, responding to negative shocks with more active retrenchment.

I construct a dynamic multiple-country model with a global financial cycle to interpret these

patterns. The model jointly determines asset prices and gross capital flows in global equilibrium,

generating international wealth distribution and a cross-section of country-specific risk premia.

Motivated by a strong correlation between aggregate capital flows and measures of global risk

appetite, I center the model around a global intermediary that trades assets in all countries. My

main experiment focuses on capital flight episodes triggered by shocks to its risk-taking capacity.

The objective of the model is to explain cross-country heterogeneity in the impact of these episodes.

To this end, I propose a new mechanism that creates this heterogeneity endogenously through the

behavior of local investors who interact with the intermediary.

This mechanism relies on tracking gross flows during capital flight events. The response of

asset prices in these events depends on the wealth of local investors. In rich countries, they readily

buy domestic assets using their large external holdings. This keeps local risk premia from rising,

while the country’s external assets and liabilities fall at the same time. In poor countries, local

investors cannot absorb domestic assets as much, so risk premia rise to keep foreign investors from

selling. Their asset markets adjust through prices rather than quantities. As a result, shocks to

the risk-taking capacity of global intermediaries generate a rise in risk premia that is concentrated

in poor countries, while retrenchment happens in rich ones. Capital flight events end up being

driven by agents in rich countries selling their foreign assets to buy domestic ones.

The main equilibrium outcome is that risky assets in rich countries appreciate in these down-

turns, effectively acting as safe assets. The reason is that negative shocks to the risk-taking capacity

of intermediaries lead to a fall in the global interest rate. Risk premia on assets in rich countries

stay low due to retrenchment by local investors, so the fall in the interest rate raises their prices.

In poor countries, the rise in risk premia dominates, and prices fall. This way, accounting for gross
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capital flows and the dynamics of short-term rates in the model leads to different signs of exposure

to global shocks in fundamentally symmetric countries.

I use the following ingredients to illustrate this mechanism. There is a continuum of countries.

In each one, there is an asset with idiosyncratic shocks to payoffs and a local agent who holds

this asset and saves abroad, buying bonds issued by a global intermediary. The intermediary is

based in a special country, interpreted as the US. It borrows from local agents and holds risky

assets in all countries. Markets for risky assets are segmented: local agents can only invest in other

countries through the intermediary. They clear country by country. The other two markets, for

intermediary’s bonds and for the single consumption good, clear globally.

The intermediary’s risk-taking capacity is limited. Even though it has access to a continuum

of assets with uncorrelated payoffs, it cannot take advantage of full diversification. The reason is

that it is unsure about the right model for country-specific shocks and takes a cautious approach

to investing, considering worst-case scenarios. This behavior reduces to a simple value-at-risk

constraint, making the intermediary treat idiosyncratic risk as a real concern and giving it a

separate risk-return trade-off for every country in its portfolio. As a result, its risk-taking capacity

can be summarized by one preference parameter that varies over time, driving global dynamics.

Since the intermediary cannot fully absorb country-specific shocks, risk-sharing between coun-

tries is incomplete. This has two main implications. First, assets offer positive risk premia, and

the intermediary makes profits. This affords the special country, where it is based, an “exor-

bitant privilege”, allowing it to finance perpetual trade deficits even if it is in debt. Second,

exposure to domestic idiosyncratic shocks creates a wealth distribution between countries. There

is a cross-section of excess returns at any point in time, and countries continually move around

the distribution due to good or bad output spells.

Due to market segmentation, asset prices in all countries depend on wealth accumulated by

local agents. In rich countries, risk premia are low. They converge to zero in the limit of infinite

wealth since any positive excess returns would create infinite demand from extremely rich domestic

investors. Agents in these countries allocate a low share of their wealth to domestic risk, relying

on safe external holdings. Despite that, they take over the home country’s market due to their

size. Foreign investors are not very important. In contrast, in poor countries, assets pay high risk

premia, and local investors hold a small fraction of the market. These countries are more exposed

to the intermediary’s net worth and risk appetites.

When a negative shock hits the intermediary’s risk-taking capacity, it seeks to sell risky assets

in all countries simultaneously. In rich countries, local investors buy sizeable quantities without a

large increase in excess returns. There are trades, with gross inflows and outflows offsetting each

other. In poor countries, there is not enough wealth to do this, and excess returns have to rise to

convince the intermediary to sell less. Prices adjust instead of quantities.

Despite a global increase in risk premia, the levels of asset prices in rich and poor countries move
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in opposite directions. The reason is that they also depend on the global interest rate in general

equilibrium. The interest rate falls after the shock to clear the market for consumption goods:

agents feel poorer due to portfolio losses and want to consume less, but aggregate output is fixed.

In poor countries, the rise in risk premia outweighs the effect of the interest rate, and asset prices

fall. In rich countries, risk premia do not increase so much, and prices go up. These responses

have different signs even though fundamental dividend risk is the same everywhere. Retrenchment

flows alone generate a full spectrum of exposure to aggregate shocks.

This result has a set of implications for international risk-sharing. First, the negative loadings

of local returns on global shocks make rich countries richer in downturns. Second, other countries

benefit from these negative loadings as well. This is because the intermediary makes capital gains

on rich countries in bad times, which limits the fall in its net worth coming from losses it takes

in poor ones. This, in turn, limits the contraction in foreign demand faced by everyone. Similar

risk-sharing patterns were documented by Gourinchas and Rey (2022) and Dahlquist et al. (2022)

for the US and the rest of the world: while the US provides insurance to other countries, its

wealth share still increases in downturns. With my mechanism, a similar relationship emerges

endogenously between rich and poor countries with symmetric fundamentals.

After showing the main mechanism, I take the model to data. The quantitative version has

two additional features. First, local agents face a portfolio constraint. The risky share of their

portfolios is bounded from above, which, in particular, prevents them from borrowing large amounts

to increase leverage in downturns. Agents in poor countries now have even less capacity to buy

assets from the intermediary in a capital flight episode, and their exposure to rick-off shocks rises.

Second, I introduce dividend shocks to the model. These shocks change aggregate output and

can be called “real” as opposed to “financial” shocks to the intermediary’s risk-taking capacity.

In this more complete environment, I quantify the importance of these two types of shocks for the

dynamics of financial flows, asset prices, and their heterogeneity across countries.

I estimate the model on aggregate capital flow and asset returns data. Estimation uses global

averages of flows and prices, but the model successfully reproduces the differences between ad-

vanced economies and emerging markets, which correspond to rich and poor countries. It generates

a larger volatility of outward flows from advanced economies, where outward flows are measured

as a share of external assets, and a larger volatility of asset returns in emerging markets.

Another set of important patterns are correlations of outward flows and asset returns with

global aggregates. Both in the model and in the data, outward flows in advanced economies fall by

more when aggregate capital flows recede, indicating more active retrenchment. Conforming with

the key mechanism, assets in advanced economies outperform those in emerging markets exactly

in these times. Retrenchment insulates domestic asset prices from global shocks.

The model ascribes more than half of the variation in aggregate capital flows to real shocks.

Financial shocks explain only about a quarter of it. Almost all variation in aggregate returns on
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risky assets is due to real shocks as well. At the same time, financial shocks are more important

for the relative performance of assets in rich compared to poor countries. Real shocks move all

asset prices in the same direction, while the loadings on financial shocks in rich and poor countries

have opposite signs. Rich countries outperform poor ones in times of low risk-taking capacity. The

model can explain half of the time-series variation in the relative performance of risky assets in

advanced economies compared to emerging markets. Financial shocks alone can explain a third.

Finally, the fact that prices of risky assets in advanced economies rise in response to negative

financial shocks decreases their cyclicality compared to emerging markets. Overall, asset prices are

positively correlated with capital flows. In poor countries, the model delivers a correlation close to

one: both real and financial shocks raise prices in times of high outward flows. In rich countries,

the model-implied correlation is three times lower, since prices respond positively to output booms

and negatively to booms in the intermediary’s risk-taking capacity.

Related literature. A large literature explores global drivers of international capital flows and

asset prices. Miranda-Agrippino and Rey (2022) provide a comprehensive review. The dominant

global factor in a large panel of risky asset prices has been extracted by Miranda-Agrippino et al.

(2020) and more recently updated by Miranda-Agrippino and Rey (2020). Habib and Venditti

(2019) find a similar global component driving stock prices around the world. Jordà et al. (2017)

document co-movement between risk-premia across the world.

Similarly strong co-movement has been documented for capital flows. Forbes and Warnock

(2012) and Forbes and Warnock (2021) show co-movement between gross flows. Barrot and Serven

(2018) identify common components in gross flows and show that these common components are

strongly related to aggregate variables such as VIX, US dollar exchange rate, and interest rates.

The main one is strongly correlated with the dominant factor in risky asset prices.

Part of this literature deals with heterogeneity between advanced economies and emerging

markets. Avdjiev et al. (2022) show that synchronization between inflows and outflows is driven

by banks, who are responsible for a larger share of flows in advanced economies as opposed to

emerging markets. Barrot and Serven (2018) and Cerutti et al. (2019) show that flows in advanced

economies are more responsive to common factors. I perform a simplified version of their factor

extraction exercise to illustrate the differences in synchronization. I show that the dominant factor

explains a larger share of variation in advanced economies and find that the cyclical component of

flows, properly adjusted for size, in this group has a larger magnitude. This fact is at the heart of

the model, which is built to generate more elastic asset markets in rich countries.

The literature studying distributions of returns and flows includes Chari et al. (2020), Gelos

et al. (2022), and Eguren Martin et al. (2021). Kalemli-Özcan (2019) and Bräuning and Ivashina

(2020) show that US monetary policy spillovers have a more pronounced effect on emerging mar-

kets. Chari et al. (2020) show the outsized effect of risk-off episodes on the worst realizations, the

left tail. This is the response to a shock to risk-taking capacity in my model: the left tail of returns
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shifts significantly further, while the average stays very close to normal times.

Another strand of literature documents the special position of the US in the global financial

system. Gourinchas et al. (2019) review evidence on various dimensions of its dominance. Gourin-

chas and Rey (2022) find that the US earns significant net returns on its net foreign asset position.

Similarly to this gap between the US and the rest of the world, there is heterogeneity within

the latter. Adler and Garcia-Macia (2018) show substantial differentials in returns on net foreign

asset positions between advanced economies and emerging markets. My model assumes a special

position of the US but generates the differences between other economies endogenously.

I contribute to the theoretical literature on the global financial cycle. The most closely related

papers are Caballero and Simsek (2020a), Morelli et al. (2022), Bai et al. (2019), Davis and

Van Wincoop (2022), Davis and Van Wincoop (2023), and Dahlquist et al. (2022).

Caballero and Simsek (2020a) show how retrenchment stabilizes domestic asset markets in

a model where countries invest in each other’s risky assets. Liquidity shocks trigger fire sales

by foreign investors. Local investors then use their foreign holdings to pick up the unwanted

asset and support its price. This mechanism is also present in Jeanne and Sandri (2023). I

build a dynamic version of this model in the style of Brunnermeier and Sannikov (2014) with

global intermediaries and endogenously arising differences in wealth, with the main focus on the

distributional consequences of aggregate capital flight.

Morelli et al. (2022) model an economy built around a global intermediary that invests in

many emerging markets. They find that shocks to the intermediary’s net worth are an important

determinant of borrowing costs around the world. Bai et al. (2019) use a similar model to measure

the relative importance of global and local shocks in explaining the cross-section of sovereign

spreads. I also study risk-off episodes driven by global intermediaries but focus on capital flows

by local investors and their equilibrium implications.

Davis and Van Wincoop (2022) construct a multicountry model to generate gross flows after a

shock to global risk aversion and show the importance of within-country heterogeneity. Davis and

Van Wincoop (2023) additionally show that symmetric shocks to identical countries can generate

positive co-movement between gross flows in and out as long as more risk-tolerant investors invest

more abroad. I focus instead on the distributional consequences of global shocks in intermediated

markets with endogenous heterogeneity between ex-ante identical countries.

Dahlquist et al. (2022) build a multicountry model with home-biased consumption and time-

varying appetites for risk coming from deep habits. They show how an adverse output shock in a

large country leads to an appreciation of its currency and, consequently, an increase in its wealth

share, as its stock prices fall by less than foreign ones when adjusted for the exchange rate. I arrive

at regressive redistribution in downturns through capital flows. In relative terms, rich countries

become richer because they compensate for the falling demand from abroad. In absolute terms,

they become richer because the shock to risk-taking capacity decreases the interest rate, while risk
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premia are held down by retrenchment, and asset prices rise.

Farboodi and Kondor (2022) study heterogeneous boom-buts dynamics with imperfect infor-

mation about asset quality. In their model, shocks determine what investors learn about firms.

In bad times, they flee from emerging markets to advanced economies, inducing a recession in the

former and stabilizing output in the latter. Fu (2023) models joint determination of capital flows

and exchange rates. He shows that currency betas are lower in countries where domestic investors

have a higher propensity to retrench than foreign ones. The resulting link between retrenchment

and cyclicality of returns is similar to that in my model. Zhou (2023) shows how exposure of

assets to investor-specific shocks depends on the willingness of other market participants to absorb

additional supply, focusing on the composition of the foreign investor base. A similar mechanism

involving domestic investors is at the heart of my model.

The fact that country-specific returns in my model load on one global and one local factor is

consistent with findings of Amiti et al. (2019), who find that local shocks are especially important

for bank flows in crises. Aguiar and Gopinath (2007) argue that emerging markets exhibit frequent

shocks to trend growth. Hassan et al. (2021) identify spikes in perceived country-specific riskiness

and show that they are associated with falling asset prices and capital flight.

The role of intermediaries in the model is similar to that in Gourinchas et al. (2022), where

they perform international arbitrage across otherwise disjoint markets. Other models with traders

intermediating international asset markets include Jeanne and Rose (2002), Gabaix and Maggiori

(2015), Greenwood et al. (2020), Fanelli and Straub (2021), and Itskhoki and Mukhin (2021).

Models with the US as a special country include, among others, Bruno and Shin (2015), Mag-

giori (2017), Farhi and Maggiori (2018), Jiang et al. (2020), Kekre and Lenel (2021), Sauzet (2023),

and Devereux et al. (2023). In Jiang et al. (2020) and Kekre and Lenel (2021), the dollar car-

ries a convenience yield. Kekre and Lenel (2021) study flight to safety caused by a shock to this

convenience yield in a model with nominal frictions and investment.

Aversion to ambiguity in my model is built on the large theoretical literature dating back to

Anderson et al. (2000), Hansen and Sargent (2001), and Chen and Epstein (2002). More recently,

Ilut and Saijo (2021) use a similar specification in a model with a continuum of firms to generate

empirically relevant co-movements and cyclical patterns in a business cycle model.

On the technical side, I use heterogeneous-agent tools that have mostly been used to model

separate countries. I employ methods from Kaplan et al. (2018) to analyze non-linear solutions

for aggregate one-time unanticipated shocks. Sequence-space methods of Auclert et al. (2021) and

Auclert et al. (2020) and insights from Bhandari et al. (2023) adapted to continuous time allow

me to speed up computations and linearize the model for estimation.

Layout. Section 2 shows a version of the model with the main mechanism. Section 3 presents the

full model, Section 4 describes equilibrium, and Section 5 treats the shocks in detail. Section 6

explains estimation and results. Section 7 performs quantitative analysis with counterfactuals.
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2 Simple Model

This section presents a simple model that delivers key insights with the necessary ingredients only.

I set up an economy with heterogeneous countries and study an aggregate capital flight episode.

Section 3 then adds other elements of the full model.

Time is continuous and runs forever. There is no aggregate uncertainty. The world is a unit

measure of countries indexed by i ∈ [0, 1] and a large special country populated by intermediaries.

Each country has a Lucas tree in fixed unit supply. Output is homogeneous across countries

and stochastic. Cumulative output of i’s tree up to time t is denoted by yit, and flow output is

dyit = νdt+ σdZit. Expected output ν and volatility σ are constant. The random increments dZit

are standard Brownian. They are independent across countries.

Agents from these countries only invest in their domestic trees and bonds issued by global

intermediaries. Bonds are riskless and short-term, paying interest rtdt. The share price of i’s tree

is an endogenous stochastic process pit. The instantaneous excess return on trees is

dRit = (dyit + dpit)/pit − rtdt

It includes dividends and capital gains. The wealth wit of a representative agent from country i is

her holdings of the tree and intermediary’s bonds. The aggregate wealth of country i is wit, which

equals wit in equilibrium. The evolution of wit is

dwit = (rtwit − cit)dt+ θitwitdRit −
wit

wit

· λwitdt+
wit

wit

· λ̂ŵtdt (1)

Here cit is consumption. The second term represents returns on the tree, where θit is its portfo-

lio share. The third and fourth terms reflect exogenous migration out of and into the country.

They do not affect consumption and portfolio choice, and their only role is to induce stationarity.

Appendix E shows another way to achieve that, using discount rates that depend on wealth.

The third term represents wealth emigration from country i to the special country. Agents

in all regular countries die with intensity λ, and their wealth moves to intermediaries. The total

outflow of wealth from i is λwitdt. New agents are born instead. They start with zero wealth and

instantly get transferred a portion of everyone’s savings so that everyone in the country has the

same net worth. This redistribution from continuing agents is in proportion to their wit. Hence,

survivors always make flow payments wit/wit · λwitdt = λwitdt to the newborns.

The last term represents the opposite process, immigration. Intermediaries die with intensity

λ̂, and their wealth is sent to one of the countries, where it is shared between local agents. The

destination country is chosen uniformly, so each country i has an influx of wealth λ̂ŵtdt, where ŵt

is the total wealth of intermediaries. Within i, each agent gets a share wit/wit of this transfer.
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The sequence problem of the agent in the country i is

max
{cis,θis}s≥t

Et

[
ρ

∫ ∞

t

eρ(t−s) log(cis)ds

]
subject to equation (1). Since everyone has the same wit, in equilibrium wit = wit, and

dwit = (rtwit − cit)dt+ θitwitdRit + (λ̂ŵt − λwit)dt

Intermediaries and the special country. The special country is special for two reasons. First,

its asset supply is different. Second, its local agents are global intermediaries. I explain these two

properties below, using notation with hats to separate this country from regular ones.

In contrast to regular countries, the special country is large, with a finite measure q̂ of trees

that are pooled together in a fund. The random components of their yields wash out, so the total

output over dt in the special country is q̂νdt. These trees can only be traded as one, in a bundle

with equal weights. I will refer to this fund as the special country’s tree for convenience. Its price

is p̂t, and the excess return is dR̂t = (νdt+ dp̂t)/p̂t − rtdt, idiosyncratic shocks washing out.

The wealth ŵt of the local representative agent, who is also the global intermediary, is its

holdings of trees less bonds outstanding. It evolves as

dŵt = (rtŵt − ĉt)dt+

∫
[θ̂itŵtdRit]di+ θ̂tŵtdR̂t +

ŵt

ŵt

· λwtdt−
ŵt

ŵt

· λ̂ŵtdt (2)

Here ĉt is consumption. The second term is excess returns on trees in all countries with portfolio

weights {θ̂it}. The third term is excess returns on the special country’s tree, where θ̂t is the

associated portfolio weight. The last two terms mirror migration terms in equation (1): there is

an inflow λwtdt, where wt =
∫
witdi is the aggregate wealth of all countries, and an outflow λ̂ŵtdt.

The aggregate wealth of intermediaries is ŵt. Again, as in all countries, newborn intermediaries

immediately receive transfers from survivors so that everyone’s wealth is the same.

The intermediary’s risk-taking capacity is limited. It faces a value-at-risk constraint:∫
V[θ̂itŵtdRit]di ≤ γtŵt

∫
E[θ̂itŵtdRit]di (3)

This constraint aggregates idiosyncratic uncertainty over the intermediary’s returns in all countries

and bounds it by a multiple of expected profits on these assets. In Section 3, I derive it from

ambiguity aversion and explain why it is reasonable to associate it with value at risk.

The parameter γt is key. It determines the intermediary’s ability to hold country-specific risk.

I call it risk-taking capacity. The intermediary could in principle take advantage of access to a

continuum of uncorrelated assets and fully insure other agents, absorbing all idiosyncratic risk.
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This case is nested as γt = ∞. With a finite γt, I can study non-trivial portfolios and trigger

capital flight episodes by temporarily lowering it. The problem of the intermediary is

max
{ĉs,θ̂s}s≥t

Et

[
ρ̂

∫ ∞

t

eρ̂(s−t) log(ĉs)ds

]
subject to equation (2) and equation (3). Since ŵt = ŵt in equilibrium, wealth evolves as

dŵt = (rtŵt − ĉt)dt+

∫
[θ̂itŵtdRit]di+ θ̂tŵtdR̂t + (λwt − λ̂ŵt)dt

Market clearing and equilibrium. Denote bond holdings of country i by bit and their holdings

of domestic trees by hit. By construction, i’s wealth is wit = bit + pithit, and the risky share θit

determines the split: θitwit = pithit and (1− θit)wit = bit.

To track the intermediary’s holdings of trees and bond issuance, let b̂t be the total bonds

issued, let {ĥit} be its holdings of trees in regular countries, and let ĥt be its holdings of the

special country’s tree. By construction, ŵt =
∫
pitĥitdi + p̂tĥt − b̂t. Portfolio weights {θ̂it} satisfy

θ̂itŵt = pitĥit for all i, and θ̂t satisfies θ̂tŵt = p̂tĥt. Bond issuance is b̂t = (
∫
θ̂itdi+ θ̂t − 1)ŵt.

assets

bit

pithit

liabilities

wit

agent in country i

assets∫
pitĥitdi

p̂tĥt

liabilities

b̂t

ŵt

global intermediary

Figure 1: Schematic balance sheets of agents from a country i and the global intermediary.

With all holdings defined, I can define equilibrium.

Definition 1. An equilibrium is a collection of price processes {rt, {pit}, p̂t}t≥0, wealth pro-

cesses {{wit}, {wit}, ŵt, ŵt}t≥0, consumption processes {{cit}, ĉt}t≥0, and processes for asset hold-

ings {{hit}, {ĥit}, {bit}, b̂t, ĥt}t≥0 such that all agents optimize and

• aggregate wealth process agrees with individual wealth: wit = wit for all i and ŵt = ŵt,

• markets for regular country trees clear: hit + ĥit = 1 for all i ∈ [0, 1],

• market for the special country tree clears: ĥt = q̂,

• bond market clears:
∫
bitdi = b̂t,

• market for consumption goods clears:
∫
citdi+ ĉt = (1 + q̂)ν.
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Markets for trees clear country by country, and the market for the intermediary’s bonds clears

globally. The market for consumption goods clears automatically as soon as other markets do.

I now characterize equilibrium. The main object of interest is asset prices pit. I start with

required returns dRit, using market clearing conditions to characterize them, and then determine

prices from them.

There is only idiosyncratic uncertainty in this economy. Only agents from country i and the

intermediary have access to country i’s tree, so excess returns dRit only load on dZit:

dRit = µR
itdt+ σR

itdZit

Drift and volatility (µR
it , σ

R
it ) of excess returns are equilibrium objects: µR

it = (ν + µp
it)/pit − rt and

σR
it = (σ + σp

it)/pit. Here (µp
it, σ

p
it) are drift and volatility of asset prices: dpit = µp

itdt+ σp
itdZit. As

usual, volatility has an exogenous and an endogenous component.

The local agent’s problem has a particularly simple solution due to log utility. Agents always

consume a constant fraction of their wealth, cit = ρwit, and choose a mean-variance portfolio:

θit =
µR
it

(σR
it )

2

Unit elasticity of intertemporal substitution leads to a constant consumption-wealth ratio. Unit

relative risk aversion in addition leads to portfolio choice with no hedging motive.

The intermediary’s consumption and portfolio choice is similar: ĉt = ρ̂ŵt and

θ̂it = γt
µR
it

(σR
it )

2

There is no real aggregate risk to its payoffs. Aversion to idiosyncratic uncertainty is due to the

value-at-risk constraint. Its particular form obviates hedging motives, leading to a mean-variance

portfolio with γt acting as time-varying risk tolerance.

Market clearing for each country’s tree and the fact that hit = θitwit/pit and ĥit = θ̂itŵt/pit

lead to the following expression:

pit = (wit + γtŵt) ·
µR
it

(σR
it )

2

This expression offers one intuitive way to look at price determination. The first important factor

is how much wealth is available for investing, wit + γtŵt, where wealth is weighted with effective

risk tolerance coefficients for the two investors: 1 for the local agent and γt for the foreign one.

The second factor is the risk-return profile of the asset, which determines how much of this wealth

will be drawn in.
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This is not a formula for prices in terms of exogenous objects because pit enters µR
it and σR

it .

Unpacking this dependence leads to the main equation of the model

µp
it + ν − rtpit︸ ︷︷ ︸
risk premium

= (σp
it + σ)2︸ ︷︷ ︸

quantity of risk

· 1

γtŵt + wit

(4)

The risk premium offered by country i’s tree is expected capital gains and dividends in excess of

the global interest rate. The quantity of risk is the variance of dividends and capital gains. They

both load on the country-specific shock dZit, so the volatilites simply add up. The price of risk

is the inverse of the total available wealth, weighted by effective risk tolerance coefficients. The

risk-taking capacity γt determines risk premia in all countries at the same time.

A useful benchmark is the case with γt = ∞. I describe it in Appendix G. In this case, nothing

prevents the intermediary from taking advantage of a fully diversified portfolio in which country-

specific risk washes out. Equation (4) shows that expected excess returns µR
it have to be zero in

equilibirum. Otherwise, the intermediary would demand assets in unbounded quantities. Since

µR
it = 0, local agents are unwilling to hold any domestic assets because for them country-specific

risks are a real concern. As a result, the intermediary holds the entire global supply of risky assets.

Local agents are not exposed to risk and all have the same wealth in the long run.

When γt is finite, the intermediary is only willing to take idiosyncratic risk for a positive

compensation. Local agents have to absorb the rest. Exposure to country-specific shocks makes

history matter for their wealth, and there is a non-degenerate wealth distribution in equilibrium.

It is convenient to illustrate heterogeneity in a steady state with a constant γt = γ.

Steady state. In the steady state, all aggregates are fixed. Excess returns on the special country’s

tree are zero, dR̂ = 0, so the tree is priced at fair value:

rp̂ = ν

Regular countries continually move across the steady-state wealth distribution due to idiosyncratic

shocks. All country-specific variables are functions of their current wealth wit only and inherit

its stochastic properties. Taking µw(w) and σw(w) to be the drift and volatility of wealth in

dw = µw(w)dt+ σw(w)dZ and applying Itô’s lemma to equation (4),

rp(w) = ν − (σw(w)p
′(w) + σ)2

w + γŵ︸ ︷︷ ︸
risk adjustment

+µw(w)p
′(w) +

σw(w)
2

2
p′′(w)︸ ︷︷ ︸

growth term

(5)

There are two additional terms relative to fair-value pricing. The first reflects the market premium

for risk in dividends and capital gains. The growth term reflects the fact that prices are a function

of wealth, so wealth dynamics introduce drift in prices.
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The drift and volatility of wealth come from the budget constraint of local agents. After some

algebra, they can be expressed as

σw(w) =
σw

w(1− p′(w)) + γŵ

µw(w) = (r − ρ− λ)w + λ̂ŵ +
σw(w)

2

w

Volatility originates in the dividend risk and is proportional to σ and wealth w. The denominator

has two terms. The first is the total market wealth w+γŵ, which reflects risk sharing between the

two participants. The second term is −p′(w)w, which accounts for endogenous risk amplification:

dividend shocks hit wealth, which translates to prices and feeds back into wealth through them.

The drift in wealth has a consumption-savings part (r − ρ)w, the migration part λ̂ŵ − λw, and

the last term is the risk compensation.

I now describe three properties of the steady state with a non-explosive price function p(w)

that converges to a constant at w → ∞. First, if this limit exists, it is the fair value:

lim
w→∞

rp(w) = ν

This is evident from equation (5). The risk correction converges to zero because in these extremely

rich countries, there is unlimited wealth available for investing, and any non-negligible risk premium

would drive demand to infinity. The growth term goes to zero because p(w) approaches a constant

and becomes insensitive to wealth as a function. As a result, risky assets in rich countries are

priced almost as the special country’s tree.

Second, in rich countries, the domestic share of local investor’s portfolios converges to zero.

The equilibrium expression is

θ(w) =
p(w)

w + γŵ

Since p(w) is bounded, θ(w) vanishes at infinity. Agents in rich countries mostly rely on safe

foreign assets, and the volatility of their wealth does not scale with size: σw(w) → σ as w → ∞.

Third, local agents in rich countries take over the market. The equilibrium expression for their

holdings h(w) is

h(w) =
w

w + γŵ

Even though their risky portfolio share vanishes at infinite wealth, they become so large that they

dominate the domestic market. The opposite is true in poor countries: local investors hold smaller

shares of trees, and at w = 0, the intermediary fully takes over.
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(a) Asset prices and the fair value (b) Holdings and risky shares of local agents

Figure 2: Panel (a): asset prices p(w) and the fair value limit. Panel (b): tree holdings of local
agents h(w) and the risky portfolio shares θ(w).

Figure 2 illustrates the three properties by showing prices p(w), domestic holdings h(w), and

the risky portfolio share θ(w) chosen by local agents. Appendix H.1 describes the calibration for

this numerical example, and Appendix C provides derivations and additional details. In particular,

I show that rich countries run trade and current account deficits, and poor countries run surpluses.

The steady-state wealth density g(w) solves the following differential equation:

0 = −[µw(w)g(w)]
′ +

1

2
[σw(w)

2g(w)]′′

The linear operator acting on g(w) in this equation is the adjoint of that acting on p(w) in the

growth term in equation (5). These two equations are coupled and have to be solved jointly.

The intermediary takes positions in trees all around the wealth distribution. Since it has access

to a continuum of uncorrelated returns, it makes sure profits, earning excess returns on its wealth

with certainty. For the special country as a whole, these profits allow an “exorbitant privilege” of

persistent trade deficits even if the country is in debt. Setting net migration flows to zero in the

steady state, its trade deficit ĉ− q̂ν can be written as

ĉ− q̂ν = r ·
(∫

p(w)ĥ(w)dG(w)− b̂

)
︸ ︷︷ ︸

net foreign assets

+ γŵ

∫ [
µR(w)

σR(w)

]2
dG(w)

Even if net foreign assets are negative, the special country can run persistent trade deficits financed

by intermediation profits. These excess returns can be further traced to two sources: risk premium

paid on trees and trading profits.

ĉ− q̂ν = r ·
(∫

p(w)ĥ(w)dG(w)− b̂

)
+

∫
(ν − rp(w))ĥ(w)dG(w)︸ ︷︷ ︸

risk premium

+

∫
µp(w)ĥ(w)dG(w)︸ ︷︷ ︸

trading profits
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The risk premium is positive because trees are priced at less than their fair value. The intermediary

takes advantage of that, borrowing at r and buying claims to a stream of dividends ν at a price

p(w) < ν/r. Dividend risk vanishes in its large portfolio.

Trading profits arise because countries move around the steady-state wealth distribution due

to idiosyncratic shocks. This churn generates steady-state capital flows as the intermediary trades

trees with local agents. Its trading strategy takes advantage of the drift in prices. Average drift is

zero in the steady state,
∫
µp(w)dG(w) = 0, but the intermediary takes positions ĥ(w) that skew

towards growing countries:
∫
µp(w)ĥ(w)dG(w) > 0. As shocks reshuffle the wealth distribution,

these countries become richer, their assets appreciate, and the intermediary sells them to buy

cheaper assets from countries that arrive to the left tail.

I now illustrate the effects of an aggregate capital flight event that hits this heterogeneous

country world. I trigger this episode by shocking the intermediary’s risk-taking capacity.

Shock to risk-taking capacity. For illustration, suppose the economy is at the steady state at

t < 0 and consider an unanticipated transitory shock to γ. For t ≥ 0,

γt = γ −∆γe
−µγt

I choose ∆γ > 0 so that the shock to risk-taking capacity is negative, and demand falls.

The intermediary seeks to sell trees in all countries. Given returns, its desired portfolio share

falls in the same proportion in every country. Since the intermediary holds a higher share of

the market in poor countries, this means it tries to sell more assets in the left tail of the wealth

distribution, and these countries are affected more.

Another difference between rich and poor countries is the reaction of local agents. They try to

absorb the unwanted assets, and their ability to do it depends on wealth. In rich countries, there

is enough wealth to replace foreign demand without a substantial rise in returns. Local agents

need to shift a small share of their portfolio towards their home countries to buy trees from the

intermediary. In poor countries, local agents cannot absorb what the intermediary wants to sell,

and risk premia rise to convince it to sell less.

Panel (a) on Figure 3 shows the change in tree holdings by local agents on impact. The dotted

line shows how much the intermediary wants to sell at constant prices, that is, if the trees continued

to offer steady-state excess returns. This reflects the shift in its demand for risk. The solid line

shows how much of that local agents actually buy in equilibrium. The difference between the two

lines indicates how much excess returns have to adjust to stop the intermediary from selling. At

large levels of wealth, there is almost no difference. Markets adjust to the shock through shifts

in quantity, and there are trades. At low levels of wealth, adjustment is primarily through prices.

When wealth approaches zero, local agents cannot absorb anything, so adjustment is through

prices only. Excess returns have to rise to exactly match the fall in γt.
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This shows why the reaction of excess returns is different across countries, but the ultimate

object of interest is asset prices. Their response depends on what happens to the interest rate as

well as risk premia. The interest rate falls on impact. This is because a fall in asset prices makes

agents feel poorer, and they want to consume less. Output is fixed, however, so the interest rate

falls to induce consumption.

(a) Change in domestic holdings (b) Change in asset prices

Figure 3: Panel (a): change in tree holdings by local agents on impact (in percent of total supply).
Panel (b): price change on impact (in percent of the steady-state value) with contributions of
foreign demand φt = γtŵt and the interest rate rt. Both responses as functions of wealth w right
before the shock.

This fall in the interest rate revalues assets. How important is this for asset prices relative to

the shifts in risk premia? Panel (b) in Figure 3 shows contributions of foreign demand φt = γtŵt

and the interest rate rt to the initial response of prices. In rich countries, the impact of the interest

rate dominates, and prices go up. Their assets are risky but act like colloquial safe assets since

they load negatively on the intermediary’s risk-taking capacity. In poor countries, the contribution

of foreign demand φt = γtŵt dominates, and prices fall.

This key insight survives in the quantitative model of Section 3. Local wealth determines the

exposure of asset prices to global financial shocks. Retrenchment by local agents compresses risk

premia, and risky assets in rich countries behave like safe assets in general equilibrium. Their

betas on the global risk-taking capacity are endogenously negative. At the same time, it is this

retrenchment that reflects capital flight in equilibrium. The fall in capital flows is driven by

investors from rich countries repatriating their foreign assets. Appendix A shows empirical support

for this mechanism, documenting that outward flows in advanced economies are more strongly

correlated with global aggregates in the data.

Risk-sharing. Rich countries become relatively richer in downturns. At the same time, they

indirectly provide insurance to the rest of the world. The intermediary makes capital gains on

their trees, and everyone else is exposed to the intermediary’s net worth. Without these capital

gains, all countries would suffer an even larger shock to foreign demand, and poor countries would

be hit particularly hard.
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The intermediary’s wealth increases on impact after a negative shock to γt. The reason is its

exposure to the special country’s tree. This tree appreciates on impact since the shock to risk-

taking capacity does not apply to it, and its price only responds to the falling interest rate. The

capital gains on this tree more than compensate for the losses on external position.

What happens to the intermediary’s net worth is qualitatively and quantitatively significant in

the model. To see why, notice that ŵt enters all expressions for country-specific variables together

with γt as a part of the product φt = γtŵt. It is important for the behavior of ŵt to conform

with the data. Dahlquist et al. (2022) find that the US wealth share increases in downturns, even

though it takes losses on its net foreign asset position. The reason is that its domestic market

outperforms foreign markets more than enough to cover this international wealth transfer. This is

exactly the role of the special country’s tree here.

I next expand the model to make it better approximate data and do quantitative analysis to

validate its predictions and run counterfactuals.

3 Full Model

I add three ingredients to the model to improve its quantitative performance. First, I introduce

real shocks alongside financial shocks from Section 2. This amounts to making the dividend rate

νt a time-varying exogenous process. Variation in output allows the model to capture swings in

aggregate consumption, which is important for both capital flows and asset prices.

Second, I introduce a portfolio constraint on local agents. In Section 2, agents in poor countries

borrow from global intermediaries, and this borrowing intensifies when γt falls. In global downturns,

intermediaries lend to poor countries to enable them to buy back trees. Qualitatively, it does

not change the fact that they are too small to insulate domestic risk premia from the shock.

Quantitatively, their ability to borrow in downturns does make a difference for prices and other

aggregates in equilibrium.

Finally, I work out the problem of the intermediary to incorporate ambiguity aversion. The

intermediary is unsure about the right model for country-specific risk and takes a cautious approach

to investing in risky assets. This feature prevents it from taking advantage of a continuum of

uncorrelated assets and does it in exactly the same way as the value-at-risk constraint.

Portfolio constraint. Local savers solve the same problem as before with one more restriction:

θit ≤ θ

It caps the share of risky assets in their portfolio. The interpretation depends on the value of θ.

If θ = 1, the saver simply cannot borrow from the intermediary. If θ > 1, she can borrow from

the intermediary up to a limit of (θ− 1)wit. Since the multiple θ of her wealth is the tree holdings,
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this means that borrowing is limited by (θ − 1)/θ < 1 of their market value. Finally, if θ < 1, the

saver must keep at least 1−θ of her wealth in riskless bonds. In this case, savers can be interpreted

as including insurers and pension funds, who are mandated to hold some safe assets.

The reaction of constrained savers to foreign demand flight is the same in all three cases: they

cannot buy what foreign investors wish to sell. Adjustment through prices rather than quantities

takes an extreme form. However, the value of θ matters for the level, as opposed to dynamics, of

a constrained country’s leverage. In my calibration, the relevant case is θ < 1, when all countries,

including constrained ones, have at least some foreign savings like in the data.

The saver still consumes a constant share of wealth, cit = ρwit, and chooses

θit = min

{
θ,

µR
it

(σR
it )

2

}
Intermediary with ambiguity aversion. I start by describing the problem of an intermediary

who has access to a finite number of countries first. I then let the number of countries go to infinity

to approximate the continuous limit. The evolution of the representative intermediary’s wealth is

dŵt = (rtŵt − ĉt)dt+
∑
i

θ̂itŵtdRit + θ̂tŵtdR̂t +
ŵt

ŵt

· λwtdt−
ŵt

ŵt

· λ̂ŵtdt

Here θ̂it is the portfolio share of a country i’s tree and θ̂t is the share allocated to the special

country’s tree.

The intermediary is unsure about the right probability measure for dZit, the random component

of dividends in every i. To account for possible misspecification, the intermediary considers other

probability measures Qi under which the process {Z̃it}t≥0 given by dZ̃it = dZit+ξitdt is a Brownian

motion instead of {Zit}t≥0. The adapted sequences {ξit}t≥0 index these alternative measures Qi.

The evolution of an individual intermediary’s net worth can be rewritten as

dŵt = (rtŵt − ĉt)dt+
∑

i
θ̂itŵt((µ

R
it − σR

itξit)dt+ σR
itdZ̃it) + θ̂tŵtdR̂t +

ŵt

ŵt

(λwt − λ̂ŵt)dt (6)

Each of the alternative measures Qi is associated with a likelihood ratio Mit relative to the original

measure. These likelihood ratios are equal to 1 at t = 0 and evolve as

dMit = −ξitMitdZit (7)

The intermediary would like to consider scenarios with heavy losses, finding corrections ξit

that minimize its payoff. Discipline is provided by a penalty that keeps the intermediary from

deviating too much from the baseline measure. The penalty function per unit of time for every i is

proportional to the expected value of η(wit)dmit, where dmit is the increment of the log-likelihood
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ratio mit = log(Mit), and η(·) is a non-decreasing (perhaps, constant) function of country i’s

wealth. This allows for different levels of caution when assessing rich and poor countries. I add

this to better approximate the distribution of external assets and liabilities.

The problem of an individual intermediary is

max
{ĉs,θ̂s,θ̂s}s≥t

inf
ξ̂Q∈Q

EQ
t

[
ρ̂

∫ ∞

t

eρ̂(s−t) log(ĉs)ds+
1

2

∑
i

∫ ∞

t

eρ̂(s−t)γ̂sη(wis)dmis

]

subject to equation (6). Here Q is the set of alternative measures that can be represented by

equation (7) and {γ̂t}t≥0 is an adapted sequence of cost parameters.

The intermediary’s behavior can be described as looking at value-at-risk measures since it

considers adverse scenarios. The difference relative to imposing a value-at-risk constraint directly is

that cautious behavior here derives from preferences rather than regulatory constraints. Declines in

risk-taking capacity can be ascribed to shifts in attitude to risk rather than tightening regulations.

The cost parameter γ̂t captures appetites for risk since it determines how far the intermediary

is willing to go with alternative adverse scenarios. A low γ̂t means low costs of considering models

with large potential losses, making risky assets less attractive. Unlimited capacity is nested as

γ̂t = ∞, which leads the intermediary to set dmit = 0 and stick to the baseline probability

measure. In this case, the intermediary takes advantage of a perfectly diversified international

portfolio and absorbs all idiosyncratic risk globally.

The intermediary solves the minimization problem first, choosing an alternative measure for

every country i and their product measure Q to account for losses suggested by models in the

admissible set Q. It then solves the usual maximization problem for given model adjustments,

choosing consumption and portfolio. In general, γ̂t could be varying over time, generating tempo-

rary episodes of low risk-taking capacity.

The increment of the log-likelihood ratio dmit can be rewritten as

dmit = −ξitdZit −
1

2
ξ2itdt

Since dZit = dZ̃it − ξitdt, where dZ̃it is a standard Brownian increment under Qi, the expectation

of this under Qi is EQ
t [dmit] = ξ2itdt/2. The problem transforms into

max
{ĉs,θ̂s,θ̂s}s≥t

inf
ξ̂{ξs}s≥t

EQ(ξt)
t

[∫ ∞

t

eρ̂(s−t)

(
ρ̂ log(ĉs) +

γ̂s
2

∑
i

η(wis)ξ
2
is

)
ds

]

subject to equation (6). This formulation acknowledges that the choice of measure Q ∈ Q is

equivalent to selecting drift corrections ξt = {ξit}. Importantly, alternative models are chosen

separately for all countries, and the intermediary thinks that dZ̃it are independent across i.
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Fix the number of regular countries at n. Consumption of the intermediary is ĉt = ρ̂ŵt, and

portfolio weights and drift correction for each country i are

θ̂
(n)
it =

γ̂tη(wit)

1 + γ̂tη(wit)
· µR

it

(σR
it )

2

ξ
(n)
it =

1

γ̂tη(wit)
· θ(n)it σR

it =
1

1 + γ̂tη(wit)
· µ

R
it

σR
it

The intermediary’s portfolio weight of each risky asset is proportional to the mean-variance

ratio. It also increases in the risk-taking capacity γ̂t and the country’s weight η(wit). Whenever

γ̂t is finite, ambiguity aversion attenuates portfolio weights, as the multiplier before the mean-

variance ratio is between 0 and 1. The drift correction ξ
(n)
it is proportional to the Sharpe ratio,

meaning that the intermediary takes a more cautious view of high-yielding countries.

To take the continuous limit, I let the number of countries n go to infinity. Payoffs in the limit

have to include integrals over i ∈ [0, 1], and portfolio weights θ̂it in the limit become a density:

θ̂it = lim
n→∞

nθ̂
(n)
it

To ensure that this limit exists, I let the risk-taking capacity γ̂t decrease as n diverges: γ̂t = γt/n.

This double limit of portfolio weights is

θ̂it = γtη(wit) ·
µR
it

(σR
it )

2
(8)

Why does risk-taking capacity have to go to zero as the number of countries grows? If the inter-

mediary’s aversion to uncertainty does not rise as it gets access to a continuum of uncorrelated

returns, it will take infinite positions as the law of large numbers wipes out all the risk. The

limiting density in equation (8) does not exist unless γ̂t decreases at least as fast as γt/n.

Another way to look at it is to account for total payoffs. Increasing n indefinitely gives the

intermediary access to more and more uncorrelated assets, so without a commensurate rise in

aversion to uncertainty the intermediary’s portfolio would blow up. It would borrow and invest

without an upper bound, and its wealth would not have well-defined dynamics in the limit.

The drift corrections approach the Sharpe ratio:

ξit = lim
n→∞

ξ
(n)
it =

µR
it

σR
it

Finally, the wealth of the special country in the limit follows

dŵt = (rtŵt − ĉt)dt+

∫ 1

0

θ̂itŵtdRitdi+ θ̂tŵtdR̂t + (λwt − λ̂ŵt)dt
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Borovička et al. (2023) similarly take a double limit to study aversion to ambiguity with recursive

preferences. In their case, uncertainty vanishes at the same speed as the aversion to ambiguity

increases, delivering a tractable limit.

Appendix F.1 reverses the order and poses the problem with a continuum of assets instead

of solving a finite-country one and taking the limits of the solutions. The results are the same.

Solving the finite-country problem first has a technical advantage: alternative measures chosen by

the intermediary are absolutely continuous with respect to the true measure. With a continuum

of countries, this does not hold, as all aggregates become deterministic and measures degenerate.

Ilut and Saijo (2021) use the same continuous limit in a model with a large portfolio of firms

to generate endogenous movements in confidence that respond to aggregates. They explain the

effect of idiosyncratic uncertainty on an ambiguity-averse decision-maker and relate it to work on

laws of large numbers by Marinacci (1999) and Epstein and Schneider (2003).

Discussion. Two elements of the model are technical: migration between countries and interme-

diary’s weights η(wit) on country-specific ambiguity. Migration enforces stationarity and does not

affect consumption or portfolio decisions. I could use variable discount rates instead:

ρ(wit, ŵt) = ρ+ λ− λ̂ŵt/wit

ρ̂(ŵt, wt) = ρ̂+ λ̂− λwt/ŵt

This would change consumption but not portfolio choice or wealth dynamics. Importantly, aggre-

gate consumption given the distribution of wealth would not change either.

The weights η(wit) make the steady-state distribution of external assets and liabilities better

approximate the data. If η(·) is increasing, the intermediary is less concerned about ambiguity

when it comes to richer countries, so the penalty for choosing alternative measures is higher for

high wit. Allowing for country-specific ambiguity captures some variation in investors’ perceptions

of countries that go beyond observable returns. Through η(wit), fluctuations in wit change the in-

termediary’s attitude to i’s assets given its risk-return profile. Hassan et al. (2021) provide evidence

for dynamically changing perception of country-specific risk that affects investor preferences.

4 Equilibrium

This section describes equilibrium, the steady state, and calibration. The definition of equilibrium

is exactly like in Section 2. Four types of markets must clear: for shares of regular country

trees, shares of the special country tree, bonds, and consumption goods. Individual wealth of

representative savers must also agree with aggregate wealth in their respective countries.

I drop the subscripts and refer to countries using their current wealth w. This step could not be

done before solving the intermediary’s problem because countries with different identities provide
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independent returns and have to be accounted for separately, even if their local dynamics are the

same. But now, with portfolio choice given by equation (8), I can work directly with prices p(w, t)

and portfolio shares θ(w, t) and θ̂(w, t) that map into holdings h(w, t) and ĥ(w, t).

Rewriting the market clearing conditions for each regular country,

µR(w, t) = σR(w, t)
2 ·max

{
p(w, t)

φ(t)η(w) + w
,
p(w, t)− θw

φ(t)η(w)

}
(9)

This equation shows how returns are determined by available cash in the market given by local

wealth w and intermediary’s demand φ(t)η(w), where the global factor φ(t) = γ(t)ŵ(t) is common

to all markets, as in Section 2.

The max operator here shows that the local savers can be constrained or unconstrained in

their portfolio choice. When the constraint is slack, the price of risk is given by the ratio of the

total supply of assets p(w, t) · 1 divided by the total demand φ(t)η(w) +w. Both local and foreign

investors are marginal. The elasticity of excess returns to the global factor φ(t) depends on the

country’s wealth. In countries with a large w, this elasticity approaches zero. Local savers can

absorb all fluctuations in foreign demand without drastic movements in required returns. In poor

countries, local savers can do it less effectively, and the elasticity approaches −1 as w → 0. This

case is well described by the simple model of Section 2.

When the constraint binds for local savers, only the intermediary is marginal, so the price of

risk is the residual supply p(w, t)− θw divided by its demand φ(t)η(w). This case is new relative

to Section 2. The intermediary is the only marginal investor in these countries, and the elasticity

of excess returns to φ(t) is −1. Domestic investors cannot absorb any shifts in foreign demand, so

they pass through to required returns one for one.

A constrained country is illustrated on panel (a) of Figure 4. The red line depicts demand

from the intermediary, local demand is in blue, and their horizontal sum in black is the overall

demand. This line has a kink where the mean-variance ratio becomes so high that local savers hit

their portfolio constraint. The supply line is vertical, and the supply-demand intersection is in the

region where domestic demand is fully inelastic.

If a negative shock to φ(t) leads to withdrawal of foreign demand, total demand shifts left.

The new supply-demand intersection is at a higher mean-variance ratio. The blue line is vertical

at this point, so local investors cannot increase their holdings. Since there is nobody to sell to,

the intermediary has to accept the old quantities, and excess returns must rise. Adjustment fully

happens through prices, which in Section 2 only happened in the limit w → 0.

A more elastic case is illustrated on panel (a) of Figure 4. The fall in foreign demand still leads

to an increase in required excess returns, but this time local savers are unconstrained and can

compensate for capital flight. There is trade. They increase their holdings in response to wider

spreads, and excess returns do not move as much.
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(a) Constrained savers
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0

(b) Unconstrained savers

Figure 4: Supply and demand for country i’s trees as a function of the mean-variance ratio µR/σ
2
R

for fixed w and p. Supply is vertical. Demand ĥ from the intermediary in red, h from the local
savers in blue. The total demand is a horizontal sum of the two. Local savers are constrained on
panel (a) and unconstrained on panel (b). Dashed lines show shifted curves after foreign demand
is partially withdrawn. Equilibria move from the black to the white dots.

The extent to which trades can insulate prices from the shock to φ(t) depends on w, which in

the picture maps into the slope of the blue line left of the kink. Large w means a low slope, with

a horizontal line in the limit or w → ∞. Excess returns do not move at all in this case. Small w

makes the blue line closer to vertical. Poor unconstrained countries behave like constrained ones.

General equilibrium. Figure 4 shows partial equilibrium shifts. To get the full general equi-

librium picture, I have to account for the following things. First, higher promised returns come

from future price growth, which requires asset prices p(w, t) to fall in equilibrium. This revalues

portfolios and impacts wealth w and ŵ. Second, consumption responds to changes in wealth. This

leads to a change in the interest rate that further revalues assets, including the safe asset issued

in the special country that is not affected by φ(t) in the first place.

Capital flows offer another general equilibrium perspective. When local investors buy domestic

assets from the intermediary, they run down their foreign holdings. Since all unconstrained coun-

tries do this simultaneously, a fall in φ(t) leads to a wave of global retrenchment, which is reflected

in the shrinking balance sheets of global intermediaries, who now raise less funding to finance their

investments. This deleveraging affects short-term rates, changing prices and revaluing wealth.

The main insights on heterogeneity from Figure 4 survive, though. Constrained markets show

very limited trading activity, and adjustment happens through prices. Unconstrained markets in

sufficiently rich countries see large trading volumes and, because of that, limited price movements.

Closing the model pins down levels of responses in addition to differences between countries that

are visible on Figure 4 already.
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To recover prices, define equilibrium drift and volatility functions (µw, µp, σw, σp) as

dw = µw(w, t)dt+ σw(w, t)dZ

dp = µp(w, t)dt+ σp(w, t)dZ

Here dZ are increments of the country-specific Brownian motions. Using the definition of returns,

µR(w, t) = (µp(w, t) + ν(t))/p(w, t)− r(t)

σR(w, t) = (σp(w, t) + σ)/p(w, t)

Plugging this into market clearing and using Itô’s lemma leads to a partial differential equation

for p(w, t). A related partial differential equation determines the evolution of the regular country

wealth distribution G(w, t) with the associated density g(w, t).

Proposition 1. The prices p(w, t) and density g(w, t) solve the following system:

r(t)p(w, t)− ∂tp(w, t) = y(w, t) + µw(w, t)∂wp(w, t) +
1

2
σw(w, t)

2∂wwp(w, t)

∂tg(w, t) = −∂w[µw(w, t)g(w, t)] +
1

2
∂ww[σw(w, t)

2p(w, t)]

subject to suitable boundary conditions. The risk-adjusted payoff function y(w, t) is given by

y(w, t) = ν(t)−
(

σ

1− ϵ(w, t)θ(w, t)

)2

max

{
1

w + φ(t)η(w)
,

1

φ(t)η(w)

(
1− θw

p(w, t)

)}
where ϵ(w, t) = w/p(w, t) · ∂wp(w, t) is the wealth elasticity of price.

The price p(w, t) solves a standard Kolmogorov backward equation akin to those describing

value functions. The discount rate is r(t), and the reward function y(w, t) is the tree yield adjusted

for risk. The wealth distribution solves a standard forward equation, and these two equations are

coupled. The feedback loop between them goes through r(t), which clears the global bond market

and therefore depends on the distribution of wealth, and the global factor φ(t), which includes

ŵ(t), the special country’s net worth that depends on the distribution of prices.

A slight complication in solving the coupled system is that the payoff function depends on

p(w, t) and its derivative in a non-linear way. On top of that, one needs to know p(w, t) to

compute the drift and volatility of wealth. This turns the problem posed by Proposition 1 into

finding a fixed point. I describe my solution algorithm in Appendix I.

Steady state. Suppose γ(t) and ν(t) are constant and the economy is in the steady state with

a steady-state wealth distribution and price, return, and portfolio weight functions. Notation for

these steady-state versions omits the time argument.
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Table 1: Steady-state calibration.

model target source

aggregates:

US wealth share 31.5% 32.3% Credit Suisse (2022)

US output share 23.7% 22.8% World Bank

average risk premium 2.62pp 2.5pp Gourinchas and Rey (2022)

emerging market premium 2.22pp 2.3pp Adler and Garcia-Macia (2018)

external assets to external liabilities:

mean 1.071 1.075 IFS (IMF)

standard deviation 0.686 0.685 IFS (IMF)

q25 0.614 0.621 IFS (IMF)

q50 0.849 0.877 IFS (IMF)

q75 1.285 1.249 IFS (IMF)

Relative to Section 2, there is a new source of heterogeneity between rich and poor countries.

Namely, there is a threshold w̃ such that the local portfolio constraint θ(w) ≤ θ binds in countries

with w < w̃. In poor countries, prices are depressed by low wealth in the market. This renders

expected returns high, so domestic investors want to allocate a high share of their portfolio to the

tree and hit the limit θ. As a country grows rich, it outgrows the constraint since the price increases

with wealth, lowering expected returns and making the tree less attractive. As in Section 2, the

risky portfolio share of local investors θ(w, t) falls in w.

Portfolio constraint makes the elasticity of excess returns to foreign demand φ(t) equal to −1

in a positive measure of countries at once. In the world without the constraint, as described in

Section 2, this extreme elasticity is only present in the limit w → 0. Introducing θ spreads this

behavior to all countries with w < w̃. In unconstrained countries, the elasticity of excess returns

to φ(t) still increases in wealth and approaches zero when w → ∞, as in Section 2.

Calibration. Table 1 presents the steady-state targets and model fit. I choose the model param-

eters to approximate the following moments. First, I designate the US as the special country and

target US wealth share of 32.3% from Credit Suisse (2022) and US share of GDP of 25.4% from

the World Bank data. Second, Gourinchas and Rey (2022) estimate that the US gets an annual

return of 2-3 percent on its external position. Third, Adler and Garcia-Macia (2018) estimate

that emerging markets earn a 2.3pp lower real return on NFA compared to advanced economies.

Finally, I make the model reproduce some moments of the empirical distribution of external assets

relative to external liabilities. See Appendix H for details.

I further normalize average output ν and set λ̂ to a value that induces zero net migration flows

in the steady state. The parameters are (ρ, ρ̂, λ, λ̂, ν, θ, σ, γ, q̂, ζ), where ζ sets the intermediary’s

weights: η(w) = ζ + (1− ζ)w.

24



Table 2: Model parameters.

parameter value meaning

regular countries

ρ 0.0793 discount rate

λ 0.0177 emigration rate

ν 0.0600 output rate

σ 0.0647 output volatility

θ 0.7059 upper limit on risky asset share

special country

ρ̂ 0.0844 discount rate

λ̂ 0.0384 emigration rate

q̂ 0.3096 asset stock

ζ 0.3824 country weight intercept

γ 0.6698 risk-taking capacity

This affine specification has two properties. First, at w → 0 it pans out to a constant, so the

total demand for assets is bounded away from zero even in countries with vanishing wealth. These

countries are taken over by the intermediary, and the prices of their trees are bounded away from

zero. Second, at w → ∞ the intermediary’s demand is proportional to that of the local investors,

so the trees are not completely taken over by domestic agents even as they become infinitely rich.

This prevents the rich countries from having to hold the entire supply of their risky assets, in

which case fluctuations in foreign demand would mechanically have very little effect.

The portfolio constraint parameter θ = 0.71 means that not only are regular countries unable

to borrow, but they also must hold some riskless debt. This can be associated with regulatory

mandates on investment vehicles. The share of unconstrained countries in the steady state is about

12%, which is close to the number of advanced economies in the world.

5 Financial and Real Shocks

This section illustrates a shock to risk-taking capacity γ in the full model and discusses its gen-

eral equilibrium implications in detail. I then compare this financial shock to a real shock that

exogenously hits output and explain what features of aggregate data these two shocks map to.

Shock to risk-taking capacity. For illustration, suppose the economy is at the steady state

during t < 0. At t = 0, there is an unanticipated shock to future path of γ:

γ(t) = γ −∆γe
−µγt1{t ≥ 0}

I set the persistence parameter µγ = 0.24 and the size of the shock ϵγ at 7.9% of the steady-state
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(a) Interest rate. (b) Safe asset price. (c) Risky asset prices.

Figure 5: Impulse responses of prices. Panel (a): global interest rate r(t), percentage points. Panel
(b): safe asset price p̂(t), percent of the steady-state value. Panel (c), solid line: average risky
asset price p(w, t), percent of the steady-state average. Dashed lines: responses of the prices at
the 5-th percentile of the wealth distribution (in green) and at the 95-th percentile (in purple).

value of γ in accordance with my estimation results from Section 6.

The shock to γ(t) has an immediate effect on the global factor φ(t) = γ(t)ŵ(t). The intermedi-

ary loses its appetite for risky assets and withdraws demand from all markets in regular countries.

Expected excess returns rise. If the interest rate r(t) was fixed, these expected returns would come

from the initial fall in prices p(w, t) and a positive drift as they gradually recover.

However, as prices fall, investors lose money on risky assets and want to consume less. With

output fixed, r(t) has to fall to convince them to consume the old amount on aggregate. The fall

in the intermediary’s risk-taking capacity thus generates a fall in the global interest rate. This

revalues assets, so the fall in r(t) limits the overall fall in prices.

Figure 5 shows the responses of r(t), p̂(t), and the average risky asset price p(w, t). In addition

to the average, panel (c) has the responses of prices at the 5-th and 95−th percentiles of the wealth

distribution. They are different and even have the opposite signs. At the 95-th percentile, the

tree gains value on impact. As explained in Section 2, this fall in the interest rate more than

compensates the rise in risk premium in rich countries since retrenchment fully neutralizes the fall

in foreign demand. This leads to instant appreciation. In poor countries, the rise in risk premiums

dominates, and assets depreciate on impact.

The safe asset, which is the special country’s tree, appreciates as well. In fact, the increase in

its price p̂(t) is enough to increase the special country’s wealth ŵ(t) on impact. This is consistent

with the results in Dahlquist et al. (2022) and Jiang et al. (2022). The special country loses money

on its foreign holdings but ends up increasing its wealth share.

What would happen without the constraint θ? Agents in the left tail of the wealth distribution

would borrow from the intermediary to buy assets, so lending to poorer countries would rise during

global downturns. These countries would be effectively issuing riskless debt to the intermediary to
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Figure 6: Gains and losses of the intermediary
and local savers on impact. Measured in percent
of global GDP, weighted by density at t = +0

Table 3: Distribution of gains and losses on im-
pact in percent of global GDP. Low w countries
are those constrained in steady state, θ(w) = θ

intermediary (safe asset) 1.96%

intermediary (risky assets, low w) −1.06%

intermediary (risky assets, high w) 0.06%

savers in low w countries −1.34%

savers in high w countries 0.31%

fund purchases of their risky assets, against empirical evidence. In my calibration, θ = 0.71 means

that regular countries cannot borrow at all, and there is no spike in lending during global busts.

Distributional impact. What do risky assets issued by different countries contribute to gains

and losses of the global intermediary’s portfolio? And how are gains and losses distributed among

investors in regular countries? Figure 6 shows them in cross-section, measured in percent of global

GDP and weighted by the steady-state density so that they can be integrated directly to compute

the totals. Table 3 aggregates gains and losses into those made by the intermediary on the safe

assets and risky assets from countries that are initially constrained and unconstrained. Constrained

countries have low wealth, so they map into emerging markets. Table 3 also aggregates the impact

of the shock on the wealth of local investors.

Two things stand out. First, total wealth revaluation is close to zero. Because the elasticity of

intertemporal substitution is equal to one, it always holds that∫
ρwdG(w, t) + ρ̂ŵ(t) = ν(1 + q̂)

The shock to risk-taking capacity γ(t) does not affect output. This means that the interest rate

in general equilibrium will adjust to revalue assets enough to keep the weighted sum of global

wealth on the left-hand side of this equation constant. An implication is that the intermediary’s

wealth and that of the rest of the world cannot go down at the same time, and there has to be

redistribution with an approximately zero sum. If ρ = ρ̂, it is exactly zero-sum.

Second, there is substantial heterogeneity. Losses are concentrated in poorer countries. In

contrast, risky assets issued in rich countries endogenously behave as almost safe due to retrench-

ment. At the same time, the intermediary shares in the losses in poor countries more than in

the gains that rich countries make. This is because the intermediary’s portfolio is skewed towards

high-yielding emerging markets.

Losses on risky assets in regular countries translate into a fall in the special country’s net foreign

asset position. This country makes a wealth transfer to the rest of the world by absorbing part of
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their losses, consistent with observations in Gourinchas and Rey (2022). On the other hand, the

intermediary’s exposure to the special country’s tree and trees in rich countries limits its losses and

increases its wealth share on impact. Rich countries contribute to stabilizing the intermediary’s

net worth ŵ(t) and, through that, help arrest the fall in φ(t) = γ(t)ŵ(t). The upshot is that rich

countries partly insure the global intermediary, which in turn partly insures the poor countries.

(a) Domestic asset holdings. (b) Net income components.

Figure 7: Panel (a): holdings of domestic assets by local investors in percent of total supply
(difference relative to the steady state). Solid line for the change on impact, dashed for the
expected change one quarter out, dotted for the expected change one year out. Panel (b): changes
in components of expected wealth accumulation over the first quarter. Changes in prices in red,
changes in interest income in blue, changes in dividends in green. Horizontal axis corresponds to
wealth at t = 0, right before the shock hits.

Adjustment in regular countries. How do regular countries adjust? Panel (a) on Figure 7

shows the expected changes in holdings of domestic assets relative to the steady state. Expectations

here are taken with respect to idiosyncratic shocks, and the horizontal axis corresponds to wealth

at t = 0. See details in Appendix J.

Investors in rich countries retrench on impact and buy about 1% of the total supply of domestic

assets. They then gradually sell them back in transition. These transactions, of course, are the

other side of the intermediary’s asset purchases.

Panel (b) decomposes expected wealth accumulation in regular countries over the first quarter.

Changes in asset prices are positive for poor countries and negative for rich ones as the world

reverts back to normal. Interest income declines for everyone, but disproportionately so for rich

investors. Dividend income increases for rich investors since they retrench and have more risky

assets in portfolios right after the shock. To finance consumption, investors from rich countries

have to sell assets since their interest income declines more than their dividend income rises.

The world becomes more unequal in terms of wealth and in terms of spreads after the shock.

Realized returns right after the shock are negative in poorer countries and close to zero in richer

countries. This is consistent with the results in Chari et al. (2020), who show that the left tail of

the return distribution moves more than the right tail during risk-off episodes. The distribution
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of required returns in the model also becomes more dispersed and skewed.

Shocks to output. I now describe another type of shock: a persistent decline in output. I hit

the economy separately with two unanticipated shocks, one to output in regular countries and one

to the special country’s output. They both have the following shape:

ν(t) = ν −∆νe
−µνt1{t ≥ 0}

I set the size of the shock ∆ν to 2.2% of the steady-state value ν and persistence parameter to

µν = 0.78 in accordance with my estimation results from Section 6.

The aggregate effects of these two shocks are qualitatively similar. Output falls on impact, so

the interest rate has to rise to make agents consume less. Asset prices fall because of lower future

dividends, and the rising interest rate depresses them even further. Magnitudes differ by about

three times: the output share of the special country is approximately one-quarter of the total.

(a) shock to regular countries. (b) shock to special country.

Figure 8: Changes in risky asset prices on impact: percentage change in p(w, t) relative to the
steady state decomposed into the effect of interest rate r(t), foreign demand φ(t), and dividends
ν(t). Shock to ν in regular countries on panel (a) and the special country on panel (b).

The falling asset prices revalue everyone’s wealth. In particular, the intermediary’s net worth

ŵ(t) takes a hit, which affects the global factor φ(t) = γ(t)ŵ(t). From the perspective of the

equilibrium condition on excess returns in equation (9), it looks like a fall in the intermediary’s

risk-taking capacity. Importantly, this happens in both cases. It is natural to expect losses to

be distributed between everyone when the shock hits regular countries: both local agents and

global intermediaries hold their assets. The shock to the special country, on the other hand, hits

dividends on the safe asset, which is only held by the intermediary. The fact that it spreads to

regular countries through φ(t) and r(t) reflects strong contagion forces.

Figure 8 shows the cross-section of impact changes in asset prices. Unlike with a shock to

risk-taking capacity γ(t), prices fall everywhere because the interest rate rises. Panel (a) shows a

rough decomposition of the impact effect into parts that come from a jump in r(t), a fall in φ(t),

and a fall in ν(t). The interest rates drive asset prices in the right tail of the wealth distribution.
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In poor countries, prices respond to foreign demand φ(t) and discounted future cash flows more.

The decomposition is not exactly additive since the price function is highly non-linear.

Empirically, US shocks are an important driver of global dynamics. Boehm and Kroner (2023)

show that news about the US economy has strong effects on risky asset prices globally. Miranda-

Agrippino and Rey (2020) provide evidence for the global impact of contractionary monetary policy

in the US. Kalemli-Özcan (2019) documents spillovers of US monetary policy that are particularly

large for emerging markets. My model does not have a nominal dimension and monetary policy,

but the real projection of a richer nominal model could generate spillovers from the special country

to the rest of the world through the same mechanism.

Differences between shocks to γ and ν. Prices react to financial and real shocks in different

ways. After a negative shock to output, all prices fall, showing strong procyclicality with respect

to ν. After a negative shock to risk-taking capacity, prices in poor countries fall, and those in rich

countries rise. The former are procyclical with respect to γ, and the latter countercyclical. Special

country’s tree shows the same pattern as those in rich countries.

Another contrast between these shocks to ν and γ is capital flows on impact. Output shocks

generate flows of similar magnitudes across countries. The reason is that they do not raise dis-

agreement on the risk properties of assets. The absolute risk aversion of the intermediary is

γ(t)ŵ(t)η(w), and that of the local investor is simply w. Since γ is constant, they only change

relative to each other to the extent that w and ŵ(t) change by different amounts. Hence, trades

are driven by differences in wealth revaluation between local agents and intermediaries. These

differences are similar across countries.

With a shock to γ, this is not the case: the fall in γ dominates movements in wealth, so the

shock opens a large gap between absolute risk aversion coefficients, generating trades. Capital

flows are strongly procyclical in rich countries and less so in poor ones.

I next estimate the model using data on asset returns and capital flows. Output shocks are

essential since data show large swings in aggregate returns. Since the effects of output shocks are

similar when they originate in the special country and in the rest of the world, I shock ν in all

countries at the same time.

6 Estimation

To estimate the model, I work with its first-order approximation. Shocks to γ and ν drive the

dynamics. I use the following processes for their deviations from the steady state:

dγ̃(t) = −µγ γ̃(t)dt+ σγ · dW (t)

dν̃(t) = −µν ν̃(t)dt+ σν · dW (t)
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Here γ̃(t) = γ(t)−γ and ν̃(t) = ν(t)−ν with (γ, ν) being the steady-state values. The shock incre-

ments dW (t) are two-dimensional standard Brownian. Parameters µγ and µν govern persistence.

Loadings σγ and σν are two-dimensional vectors. The first-order approximation of the model is

around σγ = σν = (0, 0).

I work in the sequence space and compute sequence-space Jacobians. Take two sequences of

deviaitons {γ̃(t)}t≥0 and {ν̃(t)}t≥0 that become known at t = 0. Take also a sequence {z(w, t)}t≥0.

For any t ≥ 0, the first-order deviation of z(w, t) is

z̃(w, t) =

∫ ∞

0

Jz,γ(w, t, τ)γ̃(τ)dτ +

∫ ∞

0

Jz,ν(w, t, τ)ν̃(τ)dτ

Here Jz,γ and Jz,ν are sequence-space Jacobians of z. They are defined for t ≥ 0, τ ≥ 0, and all

w. The fact the deviation sequences {γ̃(t), ν̃(t)}t≥0 become known at t = 0 is important. Shocks

dW that will happen in the future cannot affect the economy now through the deviations they

have not yet created. The time-varying function of wealth z(w, t) can represent, for example, asset

prices p(w, t) or the probability density of wealth g(w, t).

I find these sequence-space Jacobians by solving the linearized version of the coupled system of

equations from Proposition 1. Appendix L shows the linearized system and explains the algorithm.

First-order deviations of aggregate sequences {x(t)}t≥0 can be written as

x̃(t) =

∫ ∞

0

Jx,γ(t, τ)γ̃(τ)dτ +

∫ ∞

0

Jx,ν(t, τ)ν̃(τ)dτ

with Jx,γ and Jx,ν being its sequence-space Jacobians.

Since these deviations are first-order, x̃(t) additively subsumes the first-order reaction of x(t)

to all deviations in γ and ν that became known prior to t. At any s ≤ t, the shock dW (s) reveals

a new devition in γ and ν that has the following time profile: γ̃(s + τ) = e−µγτσγ · dW (s) and

ν̃(s + τ) = e−µντσν · dW (s) for all τ ≥ 0. The deviation x̃(t) adds up responses to all these

happening before t:

x̃(t) =

∫ t

−∞

(∫ ∞

0

Jx,γ(t− s, τ)e−µγτdτ

)
σγ · dW (s) +

∫ t

−∞

(∫ ∞

0

Jx,ν(t− s, τ)e−µντdτ

)
σν · dW (s)

This can be rewritten as

x̃(t) =

∫ t

−∞
(Ĵx,γ(t− s;µγ)σγ + Ĵx,ν(t− s;µν)σν) · dW (s)
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Here the reduced Jacobians Ĵx,γ and Ĵx,ν are

Ĵx,γ(t;µγ) =

∫ ∞

0

Jx,γ(t, τ)e
−µγτdτ

Ĵx,ν(t;µν) =

∫ ∞

0

Jx,ν(t, τ)e
−µντdτ

For estimation, a sample path of x̃(t) can be integrated from a simulated sequence of shocks dW

given parameters. Jacobians Jx,γ and Jx,ν only require knowing the steady state. Parameters

that determine the steady state come from the calibration procedure explained in Section 4. To

estimate the parameters of the processes for γ and ν, I use the method of simulated moments.

Data. I use two aggregates x(t): total outflows m(t) and average risky asset prices p(t) given by

m(t) =

∫
(1− θ(w, t))wdG(w, t)

p(t) =

∫
p(w, t)dG(w, t)

I compute their first-order deviations in the model and normalize them by the steady-state values.

These quantities are denoted by m̃(t) and p̃(t).

To construct the data analog for outward flows, I take the Balance of Payments and Interna-

tional Investment Positions data from the IMF. For a country i in quarter t, the quantity f raw
it

denotes net purchases of foreign assets. Following Forbes and Warnock (2012) and Forbes and

Warnock (2021), I take a smooth version:

fit =
t∑

t−3

f raw
it −

t−4∑
t−7

f raw
it

I restrict attention to portfolio debt, portfolio equity, and “other” assets (banking flows). The

analog of m̃(t) is

M(t) =

∑
i fit∑

i Ai,t−1

where Ai,t−1 is the stock of these assets one quarter before in country i. See Appendix B for details

of data construction and sample statistics.

I construct the analog of p̃(t) from the MCSI asset price index that excludes the US. Denote

the quarterly version of this index by Qt. The analog of p̃(t) is quarterly returns smoothed over

the four-quarter window: P (t) =
∑t

t−3Qs/Qs−1.

Figure 9 shows the data. The sample is 85 quarters long, starting in Q4 of 2001, which is

the first point at which I have more than 10 emerging markets in the sample for capital flows. I

32



Figure 9: Constructed data series P (t) and M(t).

compute moments of these series and compare them to moments of simulated sequences, looking

for a combination of parameters that minimizes a quadratic distance. Table 4 shows the targets.

Table 4: Targeted moments.

std(p̃t) std(m̃t) corr(p̃t, m̃t) corr(p̃t, p̃t−1) corr(m̃t, m̃t−1)

data 0.048 0.049 0.738 0.785 0.828

model 0.048 0.049 0.740 0.779 0.839

I estimate five parameters in total. The first two are persistence levels (µγ, µν). Both loading

vectors are two-dimensional: σγ = (σγ1, σγ2) and σν = (σν1, σν2). I normalize σν1 = 0. The

first dimension of the shock, dW1(t), only affects γ̃(t), while dW2(t) hits both γ̃(t) and ν̃(t).

Increments dγ̃(t) and dν̃(t) are potentially correlated. Table 5 shows estimated parameters. I

estimate standard errors using parametric bootstrap. See Appendix H.2 for details.

Table 5: Estimation results.

µγ µν σγ1 σγ2 σν2

0.244 0.776 0.126 0.084 0.0039

(0.093) (0.045) (0.031) (0.010) (0.0001)

Figure 10 shows the first-order responses of m̃(t) and p̃(t) to the standard paths of γ̃t and ν̃t:

γ̃(t) = |σγ|e−µγt · 1{t ≥ 0}

ν̃(t) = |σν |e−µνt · 1{t ≥ 0}

The shock to γ affects outward flows more strongly than prices since prices in rich and poor

countries move in opposite directions. The shock to ν affects prices more strongly, shifting all of

them in the same direction. In aggregate data, the volatility of P (t) and M(t) is similar, so the

33



Figure 10: First-order responses of m̃(t) and p̃(t) to standard-sized shocks to γ and ν, measured
in percent of the steady-state value.

model needs both shocks. In the next section, I analyze their contributions to the cyclicality of

key quantities separately.

7 Quantitative Analysis

This section dissects the effect of financial and real shocks on global aggregates and on rich and

poor countries separately. I start by showing that the model captures key differences between rich

and poor countries along the cycle, even though I only use global sequences to estimate parameters

of aggregate shocks.

Untargeted moments. I map rich countries in the model to advanced economies in the data.

A natural threshold in the model is the level of wealth at which the portfolio constraint starts to

bind in the steady state. I designate countries richer than this cutoff as advanced economies and

those below as emerging markets.

Table 6: untargeted volatilities.

outward flows asset prices

std(m̃AE
t ) std(m̃EM

t ) std(p̃AE
t ) std(p̃EM

t )

data 0.045 0.035 0.042 0.059

model 0.074 0.027 0.030 0.048

Table 6 shows untargeted volatilities of outward flows and asset prices. The model captures

two aspects of heterogeneity from the data. First, the volatility of outward flows as a share of

assets is larger in advanced economies. In the model, this property derives naturally from the

portfolio constraint that stops investors from poorer economies from reacting to global shocks.

Second, asset prices are more volatile in emerging markets. The model generates the same pattern

by allowing investors from rich economies to retrench and compensate for the shortfall of foreign

demand without much higher risk premia.
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The model overestimates the difference in the volatility of flows. This is because there is

an artificially sharp change in behavior around the portfolio constraint. Redefining advanced

economies and emerging markets so that some advanced economies are also constrained in the

steady state partly alleviates this. The same applies to asset prices. The model definition of ad-

vanced economies overstates the difference in volatility, and designating some constrained countries

as rich would make this less pronounced.

Table 7: untargeted correlations.

corr(m̃AE
t − m̃EM

t , m̃t) corr(p̃AE
t − p̃EM

t , m̃t) corr(p̃AE
t − p̃EM

t , m̃AE
t − m̃EM

t )

data 0.67 -0.16 -0.17

model 0.13 -0.55 -0.59

Table 7 shows correlations between the relative performance of rich and poor economies and

aggregates. The correlation between m̃AE
t − m̃EM

t , which is how much more outward investment

rich countries do, and global outward lows m̃t is positive in the data. This means, for example,

that investors from rich countries more actively retrench in downturns. Adding this fact to that

in Table 6 means that not only are outward flows more volatile in advanced economies, but they

are also more closely timed to global shocks. The model reproduces this pattern, although it does

not hit the correlation quantitatively.

The correlation of relative performance of assets p̃AE
t − p̃EM

t with aggregate flows m̃t is negative.

Advanced economies outperform emerging markets more in global downturns, which is when capital

flows recede. In the model, a strong negative correlation is generated by more active retrenchment

in rich countries insulating asset prices from foreign demand shocks. The last column confirms

this, showing that advanced economies outperform emerging markets more when there is a deeper

fall in their outward flows.

The converse of this is, of course, the better relative performance of emerging markets in global

booms, which is when aggregate outward flows are on the rise. Advanced economies grow their

external investment by more, and this reduction in domestic demand partly compensates for large

inflows generated by intermediaries. In poor countries, domestic investors are constrained, so the

reduction in the desired portfolio share of the domestic tree does not cause a reduction in the

actual share. A rising foreign demand meets inelastic residual supply.

Financial and real shocks. Shocks to the intermediary’s risk-taking capacity and output shocks

have the same implications for poor countries in the model: asset prices fall after a decrease in

either of the two. In rich countries, asset prices load positively on ν but negatively on γ. The same

happens in the special country. The interest rate responds positively to output and negatively

to risk-taking capacity. Figure 11 shows these patterns using impulse responses obtained with

sequence-space Jacobians.
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Figure 11: First-order impulse responses of asset prices averaged across poor countries pEM , asset
prices averaged across rich countries pAE, the special country’s price p̂, and the interest rate r.
Top row: shock to γ. Bottom row: shock to ν.

Table 8 shows variance decomposition for first-order deviations of total outward flows mt, the

global average of asset prices pt, and separately averaged asset prices in advanced economies and

emerging markets pAE and pEM . The last row shows the decomposition for pAE
t - pEM

t , which

measures relative performance of assets in advanced economies compared to emerging markets.

data full model only γ only ν

mt 0.049 0.049 0.024 0.044

pt 0.048 0.048 0.007 0.044

pAE
t 0.042 0.030 0.009 0.033

pEM
t 0.059 0.048 0.010 0.042

pAE
t - pEM

t 0.035 0.026 0.019 0.010

Table 8: standard deviations of first-order responses. Responses measured in units of the respective
steady-state values, except for the last row.

One observation is that output shocks contribute more to variance of both aggregate flows mt

and average asset prices pt. The model attributes a large share of variation in the data to ν, so

the picture would be incomplete without including it. Moreover, I estimate the shocks to have a

positive correlation of 0.56, so output is often falling in times of low risk-taking capacity.

Another observation is that the relative contribution of shocks to risk-taking capacity to flows

mt is larger than that to prices pt. This is consistent with the fact that shocks to γ are redistributive
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and do not destroy aggregate wealth. Financial shocks explain 24% of the variance in aggregate

capital flows.

The model can explain around 55% of the variance in the pAE
t − pEM

t , the relative performance

of assets in advanced economies compared to emerging markets. Financial shocks alone explain

about a third of the total variance, and real shocks in isolation about 10%.

The relative performance of advanced economies is one quantity to which output shocks con-

tribute less than the shock to risk-taking capacity. The reason is that advanced economies outper-

form emerging markets in downturns due to more active retrenchment, which is tightly connected

to risk-taking capacity shocks. Output shocks do not generate differential retrenchment patterns,

since flows in times of low output are mainly generated by domestic agents losing less wealth than

intermediaries and becoming relatively richer, which leads to them taking over the tree. This

happens in all countries, with little effect of size or the portfolio constraint.

Cyclicality. Since the two shocks move asset prices in advanced economies in oposite directions,

it is natural to expect the cyclicality of prices to be different from that in emerging markets. To

assess cyclicality, I use their correlation with aggregate outward flows m̃t. The response of m̃t to

both shocks is positive, and m̃t is a natural barometer of the global financial cycle. I compute the

correlations in the full model and then shut down the shocks to γ and ν separately to gauge their

respective contributions.

full model only γ only ν

p̂t 0.43 -0.96 0.66

pAE
t 0.52 -0.97 0.58

pEM
t 0.69 0.93 0.48

rt -0.62 0.97 -0.57

pAE
t − pEM

t -0.55 -0.95 -0.18

Table 9: correlations of first-order responses with total outflows m̃t

Table 9 shows the correlations. All prices are procyclical in the full model, and the interest rate

is countercyclical: it rises in downturns. In emerging markets, correlation with m̃t is the highest,

since both shocks to γ and ν contribute positively. In advanced economies and in the special

country, shocks to risk-taking capacity contribute negatively, which partly offsets positive co-

movement coming from shocks to output, and the overall correlation is lower. As a result, relative

performance of assets in advanced economies compared to emerging markets is countercyclical.

Table 10 shows what this implies for the cyclicality of wealth. The correlation of wealth in

advanced economies and the special country with m̃t is three times lower than that in emerging

markets. This difference is coming from the shocks to risk-taking capacity that redistribute to rich

countries in downturns, suppressing the volatility of their wealth.
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full model only γ only ν

ŵt 0.30 -0.95 0.11

wAE
t 0.32 -0.89 0.97

wEM
t 0.94 0.97 0.99

Table 10: correlations of first-order responses with total outflows m̃t

The shock to risk-taking capacity turns out to have a stabilizing impact in rich countries,

especially since it is positively correlated with the output shock. In times of low output, the risk-

taking capacity of global intermediaries is often low as well, which benefits rich countries since

their propensity to retrench supports their asset prices in downturns.

Limitations of the model. The model is an exchange economy without differentiated goods,

nominal rigidities, investment, policymakers, or within-country heterogeneity.

Adding differentiated goods and nominal rigidities can help incorporate the feedback between

aggregate demand and output. I estimate a positive correlation between shocks to risk-taking

capacity and output shocks. This suggests that a model with endogenous output could fit the data

just as well if the output is occasionally demand-determined and risk-taking capacity shocks affect

aggregate demand through asset prices, as described by Caballero and Simsek (2020b).

Nominal rigidities are important for monetary policy. Kalemli-Özcan (2019) shows that ad-

vanced economies and emerging markets are exposed to the US monetary policy in different ways.

Their own policy responses are different too, as shown by De Leo et al. (2022) and Das et al.

(2022). This heterogeneity could have aggregate implications.

The fact that in reality, all countries issue assets denominated in dollars as well as their local

currency generates another contagion mechanism, as pointed out by Jiang et al. (2020). Tracking

the distribution of countries and gross capital flows is important for studying these questions.

However, the picture is incomplete without fluctuating exchange rates since exchange rates absorb

non-trivial fractions of movements in risk premia and asset prices.

Investment and, more generally, endogenous supply of assets is necessary to model more realistic

macro adjustment to short-run shocks and long-run growth. When the supply of assets is not fixed,

gross flows matter for borrowing costs and have an important connection to the real economy.

Adding these elements to the model can open the door to studying capital controls, industrial

policy, and their external spillovers.

The data I use do not include reserves, which in reality play an important role in external

adjustment. Reserves are deployed by social planners and do not only respond to risks and returns.

I also do not consider capital control or financial repression policies. Local planners may turn out to

create international externalities, posing a non-trivial problem for the global planner. Considering

the local planner’s problem could be a useful next step, as well as thinking about a global planner

that addresses possible coordination issues between local planners around the world.
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8 Conclusion

I develop a model of the world economy with two tiers of heterogeneity between countries. The

special country occupies the place of a global intermediary and issues safe assets. Regular countries

issue risky assets and endogenously differ in wealth. The differences in wealth lead to different

responses to global shocks that drive risk premia and capital flows.

In particular, when the intermediary’s risk-taking capacity decreases and it sells risky assets

around the world, investors in rich countries retrench and support the prices of domestic assets.

Poor countries do not have enough wealth and hit the constraint that prevents them from massively

borrowing to replicate the response of rich countries with leverage. In their markets, prices adjust

instead of quantities and drop sharply. The falling interest rate revalues assets, appreciating

those issued by rich countries, which effectively makes them good substitutes for safe assets. The

distributional impact is regressive, although rich countries insure the poor ones.

I find that real shocks are as important as financial shocks for the model to capture aggregate

fluctuations in capital flows and asset prices. However, financial shocks are the main driver of the

relative performance of assets in rich countries compared to those in poor ones. Asset prices in rich

countries load negatively on the intermediary’s risk-taking capacity, and this makes their wealth

less volatile and less cyclical.
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Das, M., Gopinath, G., and Kalemli-Özcan, 2022). Preemptive policies and risk-off shocks in
emerging markets. Technical report, National Bureau of Economic Research.

Davis, J. S. and Van Wincoop, E. (2022). A theory of gross and net capital flows over the global
financial cycle. Technical report, National Bureau of Economic Research.

40



Davis, S. and Van Wincoop, E. (2023). A theory of capital flow retrenchment. Globalization
Institute Working Paper, (422).
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A Two facts about capital flows

In this section, I establish the fact that outward flows from advanced economies are more strongly

correlated with global aggregates, and their cyclical components are more volatile.

“Outflows” are net purchases of foreign assets by domestic investors. “Inflows” are net pur-

chases of local assets by foreign investors. Both are “gross” flows, even though they can be negative.

They do not have to add up to zero across countries, in contrast to net flows. I zoom in on outflows

to focus on the role of domestic investors in shaping international heterogeneity.

The main point this section makes is that private outflows from advanced economies are more

synchronized with the global financial cycle, both in terms of correlation and in terms of magnitude.

Investors from advanced economies time their retrenchment to downturns more precisely and

retrench more actively than those in emerging markets.

The data come from the Balance of Payments and International Investment Positions statistics

provided by the IMF. I supplement these with GDP data from the World Bank. See Appendix A

for details. Following the detrending procedure from Forbes and Warnock (2012) and Forbes and

Warnock (2021), I construct the following variables:

fit =
s=t∑

s=t−3

FAi,s −
s=t−4∑
s=t−7

FAi,s (A.1)

Here t is a quarter, i is a country, and FAi,t records net purchases of foreign assets by i. Forbes and

Warnock (2012) and Forbes and Warnock (2021) use similar measures to detect extreme capital

flow episodes such as stops, surges, flight, and retrenchment. The position-adjusted version is

f it =
s=t∑

s=t−3

FAi,s

Ai,s−1

−
s=t−4∑
s=t−7

FAi,s

Ai,s−1

(A.2)

Here Ait is the total stock of i’s external assets in quarter t. Both FAit and Ait are measured in

dollars and exclude reserves and FDI. Of course, private outflows do not fully describe adjustment

to shocks, since countries regularly deploy reserves, often at a large scale. These interventions and

other operations not driven by profit maximization are beyond the scope of my paper.

Note that FAi,t is different from the total change in position Ai,t − Ai,t−1 because the latter

includes valuation effects. The variables fit and f it are constructed to account for trades, not price

changes. Equation (A.1) calculates a de-trended and de-seasoned version of changes in assets due

to trades and equation (A.2) calculates percentage changes due to trades.

To track the global cycle, I extract the principal component ϕt, which I call the outflow factor,

from a balanced subpanel of fit covering the last 20 years. I rescale all series in the panel to have

the same volatility so that ϕt is not mechanically driven by countries with the largest flows.
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Figure A.1: Principal component ϕt of outflows fit and quarterly returns on MSCI ACWI smoothed
over the four-quarter windows, both normalized to have zero mean and unit standard deviation.

Figure A.1 shows ϕt with returns on MSCI ACWI, a global index of asset prices with a broad

international coverage. A large literature (see Miranda-Agrippino and Rey (2022) for a review)

documents co-movement between capital flows and measures of global risk appetite. Outflows

from countries that load more on ϕt should be more aligned with these measures and more closely

follow the global cycle. These more exposed countries turn out to be advanced economies.

Fact 1: outflows from advanced economies are more correlated with global factors. The

principal component ϕt of capital outflows explains more variation in outflows fit from advanced

economies than from emerging markets. I measure this by computing R2 of

fit = αi + βiϕt + εit

Figure A.2 shows results for individual countries in the sample. The average over advanced

economies is 26% and that over emerging markets is 10%. Outflows from advanced economies

are more tightly connected to global factors than those from emerging markets.

Figure A.2: Share of time-series variation in fit explained by ϕt for a given country i.

This means that outflows from advanced economies co-move with measures or risk appetites

more closely since they are more tightly connected to ϕt. Table 11 confirms this by showing
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correlations between within-group averages and time series associated with the global financial

cycle.

Table 11: Correlation between aggregate series and averages {fAE
t , f

AE

t , fEM
t , f

EM

t }

fAE
t fEM

t f
AE

t f
EM

t

outflow factor ϕt 0.95 0.24 0.86 0.29

VIX (negative) 0.36 0.20 0.38 0.15

asset price factor, Miranda-Agrippino and Rey (2020) 0.42 0.46 0.32 0.04

intermediary factor, He et al. (2017) 0.24 0.01 0.21 -0.16

treasury basis, Jiang et al. (2021) 0.27 0.03 0.27 0.00

Here the variables fAE
t and f

AE

t average fit and f it over advanced economies, while fEM
t and

f
EM

t average outflows from emerging markets. The asset price factor from Miranda-Agrippino and

Rey (2020) is a dominant component that they extract from 858 series of risky asset prices around

the world. The intermediary factor from He et al. (2017) traces the capital ratios of financial

intermediaries, is highly cyclical, and explains variation in expected returns on large classes of

assets. The treasury basis from Jiang et al. (2021) is a measure of convenience yield on short-term

US treasury bonds that rises with demand for these safe assets.

The differences in correlations between advanced economies and emerging markets are notice-

able in most cases and particularly salient when flows are measured relative to outstanding positions

(the highlighted column). Outflows from advanced economies are more strongly synchronized with

measures of global risk appetites. I next show that they are larger in magnitude.

Fact 2: cyclical component of outflows relative to outstanding positions is more volatile

in advanced economies. Measuring magnitudes requires an adjustment for size. Flows relative

to outstanding positions f it is a natural candidate. They show how much of their aggregate

portfolio investors move during the cycle. To extract the cyclical component, I measure the group-

specific loadings of f it on the dominant component in outward flows ϕt:

f it = αi + γϕt + β1{i ∈ AE}ϕt + εit

The coefficient β measures the difference between the loadings of position-adjusted flows on the

dominant factor between advanced economies and emerging markets. Table 12 shows that the

loadings are larger in advanced economies. The quantitative interpretation is that investors from

advanced economies repatriate 2.5% more of their external assets when the dominant component

ϕt is one standard deviation down.

Fact 1 shows that investors in advanced economies time their purchases of foreign assets to the

global financial cycle. Fact 2 now additionally shows that they rebalance portfolios more actively,

as measured by flows relative to outstanding positions. The same applies to busts: advanced
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Table 12: the dependent variable f it is expressed as percentage.

ϕt 1.290

(0.433)

1{i ∈ AE}ϕt 2.523

(0.483)

R2 = 0.04, N = 5965

economies retrench in crises and do it more actively than emerging markets.

Figure A.3 summarizes the patterns of synchronization in the two groups. Solid lines show

the average components f
AE

t and f
EM

t . This cross-sectional dispersion for every t is shown by

the shaded area. Position-adjusted outflows in advanced economies follow the outflow factor more

closely on average and are less dispersed around it. Outflows are overall more volatile in emerg-

ing markets, but this is because idiosyncratic variation dominates. The average component in

advanced economies is more volatile than that in emerging markets. I show this with a variance

decomposition in Appendix B.

Figure A.3: Aggregate outflows from advanced economies and emerging markets relative to external
assets. Black line: outflow factor ϕt, rescaled for illustration. Solid line and shaded areas show
cross-sectional averages and standard deviations of f it for each quarter t.

Appendix B also shows that these results are stronger for GDP-adjusted flows. The reason is

that advanced economies have more external assets relative to GDP, so flows as a share of GDP

are more volatile in both aggregate and idiosyncratic components. Flows relative to positions are

more informative because they quantify investor activity relative to their wealth. The fact that

wealth is not equally comparable with output in all economies speaks to the economics of long-run

asset accumulation. The fact that investors in advanced economies, on aggregate, move larger

shares of their portfolio with the global financial cycle, is instead more informative about their

demand for risky assets and the distribution of short-run demand elasticities. These observations

motivate the model.
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B Additional details for empirical facts

I use IMF data on assets and liabilities from the International Investment Position dataset and

financial accounts from the Balance of Payments dataset. I combine “portfolio investment” (both

debt and equity) with “other investment”, which contains bank loans. The GDP data come from

the World Bank.

Figure A.4: Number of countries in the sample. Left: acquisition of external assets and incurrence
of external liabilities. Center: acquisition of assets and incurrence of liabilities relative to assets
and liabilities outstanding. Right: acquisition of assets and incurrence of liabilities to GDP.

The panels are highly unbalanced. Figure A.4 shows the time-varying size of the cross-section.

To extract the outflow factor, I choose the time period from 2001 Q3 to 2022 Q3. The country

groups for this exercise are:

• Advanced economies: Australia, Canada, Croatia, Czechia, Denmark, Estonia, Finland,

France, Germany, Greece, Hong Kong, Iceland, Israel, Italy, Japan, Korea, Latvia, Lithuania,

Netherlands, Norway, Portugal, Singapore, Slovak Rep., Slovenia, Spain, Sweden, Switzer-

land, United Kingdom

• Emerging markets: Argentina, Armenia, Bangladesh, Belarus, Bolivia, Brazil, Bulgaria,

Cambodia, Chile, Colombia, Costa Rica, Ecuador, El Salvador, Georgia, Guatemala, Hun-

gary, India, Indonesia, Kazakhstan, Kyrgyz Rep., Mexico, Moldova, Namibia, North Mace-

donia, Pakistan, Peru, Philippines, Romania, South Africa, Thailand, Türkiye, Ukraine

I designate the United States, Cyprus, and Malta, who are also available, as offshores.

In addition to the measures of outflows fit and f it defined in the main text, I define a GDP-

adjusted measure f
it
:

f
it
=

s=t∑
s=t−3

FAi,s

GDPi,s−1

−
s=t−4∑
s=t−7

FAi,s

GDPi,s−1

(A.3)
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I interpolate GDP from annual data linearly. Table 13 supplements Table 11 with the same

correlations computed for fAE

t
and fEM

t
.

Table 13: Correlation between aggregate series and averages {fAE
t , f

AE

t , fAE

t
, fEM

t , f
EM

t , fEM

t
}

fAE
t fEM

t f
AE

t f
EM

t fAE

t
fEM

t

outflow factor ϕt 0.95 0.24 0.86 0.29 0.90 0.62

VIX (negative) 0.36 0.20 0.38 0.15 0.40 0.30

asset price factor, Miranda-Agrippino and Rey (2020) 0.42 0.46 0.32 0.04 0.49 0.29

intermediary factor, He et al. (2017) 0.24 0.01 0.21 -0.16 0.27 0.24

treasury basis, Jiang et al. (2021) 0.27 0.03 0.27 0.00 0.28 0.16

The ordering of correlations for this measure is similar to those for fit and f it.

B.1 Extracting factors

The balanced panel includes N = 70 countries and contains T = 79 quarters. The model is

f = FΛ + ε (A.4)

Here f is a T × N matrix that collects cross-sections as rows, f ti = fit. The matrix F is T × r,

where r is the number of factors. The matrix Λ is r×N and contains factor loadings. Error terms

are in the T ×N matrix ϵ.

I extract the principal component following Doz et al. (2012). The estimate S of the variance-

covariance matrix is

S =
1

T
f ′f (A.5)

This matrix is N×N . I denote by D the diagonal r×r matrix collecting r of its largest eigenvalues,

and by W the N × r matrix collecting the corresponding eigenvectors as columns. The first r

estimated components (the first denoted by ϕt) comprise the columns of the T × r matrix F̂

F̂ = fWD−1/2 (A.6)

Table 11 shows correlations between in-group averages {fAE
t , fEM

t , f
AE

t , f
EM

t } and time series

measuring the global risk-taking capacity. Table 13 adds correlations for {fAE

t
, fEM

t
}. I download

the quarterly VIX from the FRED website. It is available until Q4 2022. The asset price factor

from Miranda-Agrippino et al. (2020) is available until Q4 2018, the intermediary factor from He

et al. (2017) until Q4 2022, and the treasury basis from Jiang et al. (2021) until Q2 2017. The
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starting date for all these series, except ϕt, is Q1 1990. My particular vintage of ϕt starts in Q3

2001, giving the sample about 20 years.

This sample does not have to be balanced and uses more countries. The groups are

• Advanced economies: Australia, Austria, Belgium, Canada, Croatia, Czechia, Denmark,

Estonia, Finland, France, Germany, Greece, Hong Kong, Iceland, Israel, Italy, Japan, Korea,

Latvia, Lithuania, Netherlands, New Zealand, Norway, Portugal, Singapore, Slovak Rep.,

Slovenia, Spain, Sweden, Switzerland, United Kingdom

• Emerging markets: Afghanistan, Albania, Angola, Argentina, Armenia, Aruba, Azerbaijan,

Bahamas, Bangladesh, Belarus, Belize, Bhutan, Bolivia, Bosnia and Herzegovina, Brazil,

Brunei, Bulgaria, Cabo Verde, Cambodia, Cameroon, Chile, China, Colombia, Congo, Costa

Rica, Curaçao and Sint Maarten, Djibouti, Dominican Rep., Ecuador, Egypt, El Salvador,

Ethiopia, Fiji, Georgia, Guatemala, Guinea, Guyana, Haiti, Honduras, Hungary, India, In-

donesia, Iraq, Jamaica, Jordan, Kazakhstan, Kiribati, Kosovo, Kuwait, Kyrgyz Rep., Laos,

Lebanon, Lesotho, Madagascar, Malaysia, Mauritania, Mauritius, Mexico, Moldova, Mon-

golia, Montenegro, Morocco, Mozambique, Myanmar, Namibia, Nepal, Nicaragua, Nigeria,

North Macedonia, Pakistan, Papua New Guinea, Paraguay, Peru, Philippines, Poland, Qatar,

Romania, Russia, Rwanda, Samoa, Saudi Arabia, Serbia, Sint Maarten, Solomon Islands,

South Africa, Sri Lanka, Sudan, Suriname, São Tomé and Pŕıncipe, Tajikistan, Tanzania,

Thailand, Tonga, Trinidad and Tobago, Türkiye, Uganda, Ukraine, Uruguay, Uzbekistan,

Vanuatu, Venezuela, Vietnam, West Bank and Gaza, Yemen, Zambia, Zimbabwe

• Offshores: Bahrain, Bermuda, Cyprus, Ireland, Luxembourg, Malta, Panama, Seychelles,

Timor-Leste, United States

Having extracted the factor, I run the following specification in the main text:

f it = αi + γϕt + β1{i ∈ AE}ϕt + εit (A.7)

An alternative, less flexible specification shuts down country-specific intercepts:

f it = α + γϕt + β1{i ∈ AE}ϕt + εit (A.8)

This removes country fixed effects. Alternatively, I can make the specification more flexible by

replacing γϕt with quarter-specific intercepts:

f it = α + γt + β1{i ∈ AE}ϕt + εit (A.9)

This adds time fixed effects. Table 14 shows that the results are very similar across specifications.

The central column corresponds to the baseline from the main text.
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Table 14: the dependent variable f it is expressed as percentage.

ϕt 1.301 1.290

(0.448) (0.433)

1{i ∈ AE}ϕt 2.510 2.523 2.423

(0.492) (0.483) (0.508)

R2 0.02 0.04 0.05

country FE NO YES YES

time FE NO NO YES

N = 5965 across all specifications

B.2 Variance decomposition

The variance of these size-adjusted flows can be decomposed into time-series dispersion of the

averages f t or f t
and cross-sectional dispersion around these averages. Taking f it,

V[f it] = V[E[f is|s = t]]︸ ︷︷ ︸
aggregate

+E[V[f is|s = t]]︸ ︷︷ ︸
idiosyncratic

(A.10)

Table 15: Decomposition of total variance of f it within advanced economies and emerging markets.
The sample spans Q1 2003 through Q4 2022 and contains 28 AE and 47 EM on average.

standard deviation of f it total variance aggregate idiosyncratic

advanced economies 0.10 0.0107 0.0020 0.0087

emerging markets 0.21 0.0456 0.0012 0.0444

Table 15 shows this decomposition conditional on advanced economies and emerging markets.

Importantly, the aggregate component is larger in advanced economies. Not only are the average

outflows from advanced economies more tightly connected to aggregates, but they are also more

volatile.

Table 16: Decomposition of variance in f
it
between advanced economies and emerging markets.

standard deviation of f it total variance aggregate idiosyncratic

advanced economies 0.17 0.0297 0.0060 0.0237

emerging markets 0.05 0.0026 0.0001 0.0025

Table 16 is the analog of Table 15 for flows adjusted by GDP. The differences between advanced

economies and emerging markets are so much more pronounced because advanced economies have

more external assets relative to GDP. Figure A.5 shows the ratio between average assets over GDP

in advanced economies and emerging markets, fAE

t
/fEM

t
. It also shows the same ratio for liabilities

over GDP. Advanced economies accumulate more assets relative to the size of their economies, so
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it is not particularly surprising that purchases and sales of foreign assets adjusted for output are

larger in magnitude in these countries.

Figure A.5: Ratio of average assets-to-GDP and liabilities-to-GDP in advanced economies and
emerging markets.

The synchronization of GDP-adjusted measures of flow with the global flows is also more

pronounced in advanced economies. Figure A.6 shows the analog of Figure A.3 for fAE

t
and fEM

t
.

Emerging markets look even less synchronized with the global capital flows than on Figure A.3

since ϕt on these pictures is normalized to have a standard deviation that is the average of that

of fAE

t
and fEM

t
, and these two are substantially different. Using position-adjusted flows, as I do

in Appendix A, is more informative because they are commensurate in size across advanced and

emerging economies and because they capture the intensity of trading relative to wealth, which

has a very different relationship to output in different countries.

Figure A.6: Aggregate outflows from advanced economies and emerging markets as a percentage
of GDP. Black line: outflow factor ϕt normalized to have the average standard deviation between
fAE

it
and fEM

it
. Error bands show cross-sectional standard deviations of f it in the two groups for

each quarter t.

Figure A.7 presents the time series of cross-sectional size for advanced economies and emerging

markets. Advanced economies dominate the sample of position-adjusted outflows before 2008, but
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the groups are of comparable size. After 2008, emerging markets overtake advanced economies,

outnumbering them by slightly more than two times at the peak. The idiosyncratic component of

the total variance in the emerging market panel is five times larger. In the sample of outflows nor-

malized by GDP, they always outnumber advanced economies by 2-2.5 times, and the idiosyncratic

component of the total variance is 9 times smaller.

Figure A.7: Number of countries in the sample for the two groups: advanced economies and
emerging markets. Left: the panel of outflows normalized by positions. Right: the panel of
outflows normalized by GDP.
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C Details of the simple model

In this section, I explain the properties of the steady state in the simple model that appear in the

text of Section 2.

Holdings. I start by deriving the equilibrium expressions for h(w) and θ(w). First, from the

optimal choice of agents,

θ(w) =
µR(w)

σR(w)2
(A.11)

θ̂(w) = γ
µR(w)

σR(w)2
(A.12)

Using the fact that p(w)h(w) = θ(w)w and p(w)ĥ(w) = θ̂(w)ŵ, the market clearing condition

h(w) + ĥ(w) = 1 can be transformed into

p(w) = θ(w)w + θ̂(w)ŵ (A.13)

Using the fact that θ̂(w) = γθ(w),

θ(w) =
p(w)

w + γŵ
(A.14)

From this,

h(w) =
w

w + γŵ
(A.15)

Wealth dynamics. I next derive the drift and volatility of regular country wealth. The definitions

of µw(w), σw(w), µp(w), and σp(w) are

dw = µw(w)dt+ σw(w)dZ dp = µp(w)dt+ σp(w)dZ (A.16)

Here dZ is the increment of the country-specific dividend shock. The budget constraint of a regular

country is

dw = (r − λ)wdt+ λ̂ŵdt− c(w)dt+ θ(w)w[µR(w)dt+ σR(w)dZ] (A.17)

From this,

σw(w) = θ(w)wσR(w) = θ(w)w
σp(w) + σ

p(w)
=

w

w + γŵ
(σp(w) + σ) (A.18)

Here I used the fact that σR(w) = (σp(w) + σ)/p(w) and equation (A.14) for θ(w).
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By Itô’s lemma, σp(w) = p′(w)σw(w), so

σw(w) =
w

w + γŵ
(p′(w)σw(w) + σ) =

σw

w + γŵ − p′(w)w
(A.19)

The volatility of wealth originates in the dividend volatility and is amplified through prices: when

a dividend shock hits wealth, it transmits to prices in equilibrium and feeds back into wealth. To

see this intuitively, rewrite the above expression as

σw(w) = σh(w) · w + γŵ

w + γŵ − p′(w)w
(A.20)

Now turning to µw(w),

µw(w) = (r − ρ− λ)w + λ̂ŵ + wθ(w)µR(w)

= (r − ρ− λ)w + λ̂ŵ + wθ(w)2σR(w)
2

= (r − ρ− λ)w + λ̂ŵ +
σw(w)

2

w
(A.21)

Here I used the fact that consumption is c(w) = ρw and in optimum.

Properties. Taking the market clearing condition again,

µR(w) =
p(w)σR(w)

2

w + γŵ
(A.22)

Plugging µR(w) = (µp(w) + ν)/p(w)− r and σR(w) = (σp(w) + σ)/p(w),

µp(w) + ν − rp(w) =
(σp(w) + σ)2

w + γŵ
(A.23)

Using Itô’s lemma,

µw(w)p
′(w) +

σw(w)
2

2
p′′(w) + ν − rp(w) =

(σw(w)p
′(w) + σ)2

w + γŵ
(A.24)

Plugging the formula for σw(w) into the right-hand side and rearranging,

rp(w) = ν − σ2(w + γŵ)

(w + γŵ − p′(w)w)2
+ µw(w)p

′(w) +
σw(w)

2

2
p′′(w) (A.25)

This is the differential equation that p(w) has to satisfy. I work with equilibria in which prices

are non-explosive, meaning p(w) has a constant limit as w → ∞. In such equilibria, p′(w) → 0 as

w → ∞, and µw(w) and σw(w) have the following properties.

First, σw(w) → σ as w → ∞. The volatility of wealth does not scale with its size as a
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country grows rich. Large portfolios have relatively little risk. Second, from this, it follows that

µw(w)/w → r − ρ − λ. Drift in wealth does scale with its size. If r < ρ, large portfolios are

simply consumed away, with λ adding some wealth drain through emigration. Plugging this into

equation (A.25), taking the limit of both sides as w → ∞, and using the fact that p′(w) and p′′(w)

both converge to zero,

r lim
w→∞

p(w) = ν + (r − ρ− λ) lim
w→∞

p′(w)w (A.26)

Since the limit of p(w) exists by assumption, that of p′(w)w exists too. But if it exists, it must be

zero. Otherwise, p′(w)w is bounded away from zero for all w > w̄ for some w̄, which means |p′(w)|
can be bounded from below by δ/w for some δ > 0, and hence |p(w)| > δ(log(w)− log(w̄))+ |p(w̄)|,
which contradicts p(w) having a limit as w → ∞.

The upshot is that

lim
w→∞

p(w) =
ν

r
(A.27)

Asset prices converge to fair value as wealth goes to infinity, and the risk premium vanishes. Risky

assets in rich countries are priced almost as the special country’s tree.

Balance of payments. There is trade in goods and assets in this economy. Components of the

payment balance have the following form:

trade balance = νdt+ σdZ − ρwdt (A.28)

factor payments = rb(w)dt− νĥ(w)dt (A.29)

transfers = λ̂ŵdt− λwdt (A.30)

current account balance = trade balance + factor payments + transfers (A.31)

Trade balance is equal to net exports, which is everything a country produces in excess of its

consumption. Factor payment balance is receipts (interest payments on intermediary’s debt) less

dividends sent abroad. Transfers account for the migration of wealth. Taken together, these three

variables constitute the current account.

It is clear that rich countries run trade deficits and poor countries run trade surpluses. The

difference is due to consumption. The factor payment balance can be rewritten as

factor payments = rwdt− νdt− σdZ + h(w)(ν − rp(w))dt (A.32)

In rich countries, interest payments from abroad dominate as a source of factor income. They scale

with wealth, while the rest converges to a constant. In poor countries, factor payments converge

to −(νdt+ σdZ), the dividends sent abroad. This article balances their positive net exports.
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Taking all three articles together, the current account balance can be rewritten as

current account balance = (r − ρ− λ)wdt+ λ̂ŵdt+ h(w)(νdt+ σdZ − rp(w)dt) (A.33)

Rich countries run current account deficits that scale with wealth approximately as (r−ρ−λ)wdt.

Poor countries run surpluses, which in the limit of w → 0 converge to λ̂ŵdt, the wealth immigration.

The net foreign asset position of a country is

N(w) = b(w)− p(w)ĥ(w) = w − p(w) (A.34)

The dynamic evolution in N(w) is

dN(w) = dw − dp(w) = (r − ρ− λ)wdt+ λ̂ŵdt+ (dp(w) + νdt+ σdZ)h(w)− dp(w)

= current account balance− ĥ(w)dp(w) (A.35)

Net foreign assets rise as a result of current account surplus or due to valuation adjustments. Since

this integrates to zero in the steady state, the current account of all regular countries as a whole

against the special country is

total current account balance =

[∫
ĥ(w)µp(w)dG(w)

]
dt (A.36)

In my calibration, this is positive. The drift in prices integrates to zero,∫
µp(w)dG(w) = 0 (A.37)

It is not monotone as a function, but the sign only changes once: µp(w) is positive for small w and

negative for large w. Since ĥ(w) is a decreasing positive function,∫
ĥ(w)µp(w)dG(w) > 0 (A.38)

The special country thus runs a current account deficit against regular countries. Since the current

account is equal to the negative of the financial account, it equivalently runs a financial account

surplus. What allows the special country to run a current account deficit is its trading profits:

it chooses positions ĥ(w) that skew toward growing countries with positive drift in prices. As

countries churn in the wealth distribution, the intermediary makes capital gains on average and

realizes them through trading.
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D Details of portfolio choice

In this section, I derive the portfolio choice of the agents and characterize their value functions.

This setup features wealth migration between countries. Appendix E shows a specification with

discount rates that vary with wealth instead.

Regular country savers. I start with the savers from regular countries. The evolution of an

individual saver’s wit given her country’s aggregate wealth wit is

dwit = (rtwit − cit)dt+ θitwitdRit +
wit

wit

· λ̂ŵtdt−
wit

wit

· λwitdt (A.39)

Here cit is consumption, and the first term in equation (A.39) represents the consumption-savings

trade-off. The second term represents returns on the domestic tree, where θit is its portfolio share

that the saver chooses. She still operates under a portfolio constraint θit ≤ θ.

The last two terms represent exogenous migration in and out of regular countries. The third

term in equation (A.39) represents wealth immigration from the special country. Savers in that

country die with intensity λ̂, and their money is sent to one of the regular countries, where it

is shared between the local savers in proportion to net worth. The destination country is chosen

uniformly, so each country i has an influx of wealth λ̂ŵtdt, where ŵt is the special country’s wealth.

In i, each saver gets a share wit/wit of this transfer.

Finally, the fourth term represents emigration to the special country. In regular countries,

savers die with an intensity λ, and their wealth is sent to the special country. The total outflow of

money from i is λwitdt. New savers are born instead. They start with zero wealth and instantly get

transferred a portion of everyone’s savings so that everyone within the country has the same net

worth. This redistribution from continuing savers is in proportion to their wit. Hence, conditional

on continuing, they always make flow payments λwitdt to the newborns.

The sequence problem of the saver in the country i is

Vit = max
(cis,θis)s≥t

Et

[
ρ

∫ ∞

t

eρ(t−s) log(cis)ds

]
(A.40)

subject to equation (A.39) and θit ≤ θ. Savers choose consumption rate and the portfolio share

allocated to risky assets. They take the interest rate rt, tree price pit, and aggregate net worth wit

as given. The discount rate ρ is constant.

Since everyone has the same wit, in equilibrium wit = wit, and the evolution of the total wealth

in country i is

dwit = (rtwit − cit)dt+ θitwitdRit + (λ̂ŵt − λwit)dt

The proposition below characterizes the solution to their problem in equation (A.40).
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Proposition 2. Given the time paths of the global interest rate rt, the special country’s wealth

ŵt, and the drift and volatility of the excess return process (µR
it , σ

R
it ),

Vit = log(ρwit) + κ(wit, t) (A.41)

where κ(wit, t) satisfies a partial differential equation. Consumption and portfolio choice are

cit = ρwit (A.42)

θit = min

{
θ,

µR
it

(σR
it )

2

}
(A.43)

Proof of Proposition 2. Since there is no aggregate uncertainty, state variables for a saver in

country i are her own wealth wit, aggregate wealth of her country wit, and time t. Dropping the

subscript i, define the drift and volatility of wit and wit:

dw = µw(w, t)dt+ σw(w, t)dZ (A.44)

dw = µw(w,w, t; c, θ)dt+ σw(w,w, t; θ)dZ (A.45)

The saver correctly assesses the functions µw(w, t) and σw(w, t) but does not internalize the effect

of her choices on w. The drift and volatility of individual wealth depend on consumption and

portfolio choice (c, θ):

µw(w,w, t; c, θ) = r(t)w − c+ θµR(w, t)w + w

(
λ̂
ŵ(t)

w
− λ

)
(A.46)

σw(w,w, t; θ) = θσR(w, t)w (A.47)

Here the dependence on time comes from the drift and volatility of returns µR(w, t) and σR(w, t)

as well as the global interest rate r(t) and the net worth of the special country ŵ(t). The HJB

equation for the saver’s value V (w,w, t) is, suppressing the arguments,

ρV − ∂tV = max
c,θ≤θ

ρ log(c) + µw(w,w, t; c, θ)∂wV +
σw(w,w, t; θ)

2

2
∂wwV

+ µw(w, t)∂wV +
σw(w, t)

2

2
∂wwV + σw(w, t)σw(w,w, t; θ)∂wwV (A.48)

Now guess that the value function V (w,w, t) has the following form:

V (w,w, t) = log(ρw) + κ(w, t) (A.49)
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Plugging this into equation (A.48),

ρ log(ρw) + ρκ(w, t)− ∂tκ(w, t) = max
c,θ≤θ

ρ log(c) +
µw(w,w, t; c, θ)

w
− σw(w,w, t; θ)

2

2w2

+ µw(w, t)∂wκ(w, t) +
σw(w, t)

2

2
∂wwκ(w, t) (A.50)

Notice that the cross-derivative term drops out. Now using the functional forms for µw(w,w, t; c, θ)

and σw(w,w, t; θ) from equation (A.46) and equation (A.47), the optimal choices are

c∗ = ρw (A.51)

θ∗ = min

{
µR(w, t)

σR(w, t)2
, θ

}
(A.52)

This shows that savers consume a constant fraction of their wealth and choose a mean-variance

portfolio whenever they can.

To get the partial differential equation that describes κ(w, t), use the consistency requirement

w = w, which also implies µw(w, t) = µw(w,w, t; c
∗, θ∗) and σw(w, t) = σw(w,w, t; θ

∗). Plugging

this into equation (A.51) and equation (A.50),

ρκ(w, t)− ∂tκ(w, t) =
µw(w, t)

w
− σw(w, t)

2

2w2
+ µw(w, t)∂wκ(w, t) +

σw(w, t)
2

2
∂wwκ(w, t) (A.53)

Boundary conditions for this equation in general depend on the properties of loadings µR(w, t) and

σR(w, t). Plugging the optimal choice of controls in equation (A.51) and equation (A.52),

µw(w, t) = (r(t)− ρ− λ)w + λ̂ŵ(t) + min

{
µR(w, t)

σR(w, t)2
, θ

}
µR(w, t)w (A.54)

σw(w, t) = min

{
µR(w, t)

σR(w, t)2
, θ

}
σR(w, t)w (A.55)

At w = 0, the drift of wealth is not equal to zero. This property helps avoid w = 0 being

an absorbing state. However, κ(w, t) might diverge around small w. Assuming that µR(w, t) is

bounded, the limiting behavior of κ(w, t) around w = 0 is

lim
x→0

κ(x, t)

log(x)
= −1 (A.56)

Assuming that µR(w, t)/σR(w, t) approaches zero as w → ∞,

lim
x→∞

ρκ(x, t)− ∂tκ(x, t) = r(t)− ρ− λ (A.57)

The last remaining piece is a suitable initial or terminal condition. In practice, I will use the
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steady-state value of κ(w, t) as the limiting terminal condition at infinity. Assuming that µR(w, t)

is bounded and µR(w, t)/σR(w, t) → 0 as w → ∞, this completes the characterization of κ(w, t)

given the general equilibrium objects r(t), ŵ(t), µR(w, t), and σR(w, t). □

Intermediaries. I next describe the special country. The individual net worth ŵt of an interme-

diary, who is also a saver in the special country, evolves as

dŵt = (rtŵt − ĉt)dt+
∑
i

θ̂itŵtdRit + θ̂tŵtdR̂t +
ŵt

ŵt

· λwtdt−
ŵt

ŵt

· λ̂ŵtdt (A.58)

Consumption is ĉt and ŵt is the special country’s aggregate wealth. The second and third terms

are excess returns on trees in regular countries and at home. Positions (θ̂it, θ̂t) are akin to θit in

the regular country’s problem. Portfolios with a continuum of idiosyncratic returns require special

care, so I write the total return as a sum without specifying its type. Below, I work out this

problem for a finite number of countries and then let the number of countries grow to infinity.

The last two terms are the mirror image of wealth migration terms in equation (1): there is

an inflow of λwtdt, where wt =
∫ 1

0
witdi is the aggregate wealth of the regular countries, and an

outflow of λ̂ŵtdt. Again, as in regular countries, newborn savers immediately receive transfers

from everyone else so that everyone’s wealth is the same.

The individual wealth ŵt of the special country savers aggregates into ŵt evolving as

dŵt = (rtŵt − ĉt)dt+
∑

i
θ̂itŵtdRit + θ̂tŵtdR̂t + (λwt − λ̂ŵt)dt (A.59)

Taking into account drift corrections, the evolution of an individual intermediary’s net worth can

be rewritten as

dŵ = (rtŵt − ĉt)dt+
∑

i
θ̂itŵt((µ

R
it − σR

itξit)dt+ σR
itdZ̃it) + θ̂tŵtdR̂t +

ŵt

ŵt

(λwt − λ̂ŵt)dt (A.60)

The problem of an individual intermediary is

V̂t = max
{ĉs,θ̂s,fs}s≥t

inf
Q∈Q

EQ
t

[
ρ̂

∫ ∞

t

eρ̂(s−t) log(ĉs)ds+
1

2

∫ ∞

t

eρ̂(s−t)γ̂s
∑
i

η(wis)dmis

]
(A.61)

subject to equation (A.60). Note a constant discount rate ρ̂.

Proposition 3. Fix the number of regular countries at n. Given the path of the global interest

rate rt and the vector xt of aggregate wealth in every country including ŵt, the value function of

an individual special country saver is

V̂
(n)
t = log(ρ̂ŵt) + κ̂(n)(xt, t) (A.62)
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The function κ̂t solves a first-order ordinary differential equation. The choice of portfolio weights

and drift correction for each country i is

f̂
(n)
it =

γ̂tη(wit)

1 + γ̂tη(wit)
· µR

it

(σR
it )

2
(A.63)

ξ
(n)
it =

1

γ̂tη(wit)
· f (n)

it σR
it =

1

1 + γ̂tη(wit)
· µ

R
it

σR
it

(A.64)

Proof of Proposition 3. Fix the number of regular countries n. The state variables of the global

bank are its wealth ŵ, a vector x that combines aggregate special country wealth ŵ and all other

(wi), and time t that summarizes all other variables. The evolution of individual wealth ŵ is

dŵ = (rtŵt − ĉt)dt+
∑
i

θ̂itŵt((µ
R
it − σR

itξit)dt+ σR
itdZ̃it) + θ̂tŵtdR̂t (A.65)

+
ŵt

ŵt

(λwtdt− λ̂ŵt)dt

Combine all (dZ̃it) into a vector dZ̃t. Aggregate vector x evolves as

dx = µx(x, t)dt+ σx(x, t)dZ̃t (A.66)

The HJB equation for V̂ (ŵ, x, t) is, suppressing arguments,

ρ̂V̂ − ∂tV̂ = max
ĉ,θ̂,(θ̂i)

min
(ξi)

ρ̂ log(ĉ) +
γ̂(t)

2

∑
i

η(wit)ξ
2
i + µŵ(ŵ, x, t; ĉ, θ̂, (θ̂i, ξi))∂ŵV̂ + µx(x, t)

′∂xV̂

+
σŵ(ŵ, x, t; (θ̂i))

2

2
∂ŵŵV +

1

2
tr(σx(x, t)

′∂xx′V σx(x, t)) + σŵx(ŵ, x, t; (θ̂i))
′∂ŵxV (A.67)

Here the drift and variance of ŵ conditional on controls c, θ̂, (θ̂i), and (ξi) are

µŵ(ŵ, x, t; ĉ, θ̂, (θ̂i, ξi)) =

(
r(t)− λ̂+

Et[θ̂dR̂(t)]

dt

)
ŵ − c+

∑
i

ŵθ̂i(µ
R
it − ξiσ

R
it ) +

w(t)

ŵ(t)
λŵ (A.68)

σŵ(ŵ, x, t; (θ̂i))
2 = ŵ2

∑
i

θ̂2i (σ
R
it )

2 (A.69)

σŵx(ŵ, x, t; (θ̂i)) = ŵσx(x, t)v(x, t, (θ̂i)) (A.70)

The vector v(x, t, (θ̂i)) in equation (A.70) collects the products (θ̂iσ
R
it ).

The solution for the weight on the special country’s tree θ̂ will only be finite if Et[dR̂t] = 0.

I assume that this is the case. The optimal weight θ̂∗ is not determined and does not affect the

value of the objective, so I will omit it from the notation for µŵ(ŵ, x, t; ĉ, θ̂
∗, (θ̂i, ξ

∗
i )) below.
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The expressions for variance of dŵ and co-variance of dŵ and dx per unit of time in equa-

tion (A.69) and equation (A.70) use independence between dZ̃it.

Solving the minimization problem over (ξi),

ξ∗i =
1

γ̂(t)η(wit)
· θ̂iσR

it · ŵ∂ŵV̂ (A.71)

Plugging this into equation (A.68),

µŵ(ŵ, x, t; ĉ, (θ̂i, ξ
∗
i )) = (r(t)− λ̂)ŵ − ĉ+

∑
i

(
ŵθ̂iµ

R
it − ∂ŵV̂

(ŵσR
it )

2

γ̂(t)η(wit)
θ̂2i

)
+

w(t)

ŵ(t)
λŵ (A.72)

The problem in equation (A.67) is now

ρ̂V̂ − ∂tV̂ = max
ĉ,(θ̂i)

ρ̂ log(ĉ) +
(∂ŵV̂ )2

2γ̂(t)

∑
i

(ŵσR
it )

2

η(wit)
θ̂2i + µŵ(ŵ, x, t; ĉ, (θ̂i, ξ

∗
i ))∂ŵV̂ + µx(x, t)

′∂xV̂

+
σŵ(ŵ, x, t; (θ̂i))

2

2
∂ŵŵV̂ +

1

2
tr(σx(x, t)

′∂xx′V σx(x, t)) + σŵx(ŵ, x, t; (θ̂i))
′∂ŵxV̂ (A.73)

Plugging equation (A.72) and equation (A.69) into this,

ρ̂V̂ − ∂tV̂ = max
ĉ,(θ̂i)

ρ̂ log(ĉ)− ĉ∂ŵV̂ + ∂ŵV̂
∑
i

ŵµR
it θ̂i −

(∂ŵV̂ )2

2γ̂(t)

∑
i

(ŵσR
it )

2

η(wit)
θ̂2i

+

(
r(t)− λ̂+ λ

w(t)

ŵ(t)

)
ŵ∂ŵV̂ + ŵ2

∑
i

θ̂2i (σ
R
it )

2

2
∂ŵŵV

+ µx(x, t)
′∂xV̂ +

1

2
tr(σx(x, t)

′∂xx′V σx(x, t)) + σŵx(ŵ, x, t; (θ̂i))
′∂ŵxV (A.74)

Guess that the value function V̂ (ŵ, t) has the following form

V̂ (ŵ, x, t) = log(ρ̂ŵ) + κ̂(x, t) (A.75)

This immediately leads to the optimal choice of consumption:

ĉ∗ = ρ̂ŵ (A.76)

Replacing this in equation (A.74),

ρ̂κ̂(x, t)− ∂tκ̂(x, t) = max
(θ̂i)

∑
i

(
µR
it θ̂i −

(σR
it )

2

2γ̂(t)η(wit)
θ̂2i −

(σR
it )

2

2
θ̂2i

)
+ r(t)− ρ̂− λ̂+

λw(t)

ŵ(t)

+ µx(x, t)
′∂xκ̂(x, t) +

1

2
tr(σx(x, t)

′∂xx′κ̂(x, t)σx(x, t)) (A.77)
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The optimal choice of portfolio weights (θ̂i) is

θ̂∗i =
γ̂(t)η(wit)

1 + γ̂(t)η(wit)
· µR

it

(σR
it )

2
(A.78)

This leads to the following expression for the optimal drift correction:

ξ∗i =
1

1 + γ̂(t)η(wit)
· µ

R
it

σR
it

(A.79)

The differential equation for κ̂(t) becomes

ρ̂κ̂(x, t)− ∂tκ̂(ŵ, t) =
1

2

∑
i

γ̂(t)η(wit)

1 + γ̂(t)η(wit)

(
µR
it

σR
it

)2

+ r(t)− ρ̂− λ̂+
λw(t)

ŵ(t)

+ µx(x, t)
′∂xκ̂(x, t) +

1

2
tr(σx(x, t)

′∂xx′κ̂(x, t)σx(x, t)) (A.80)

The last remaining piece is a suitable initial or terminal condition. In practice, I will use the

steady-state value of κ̂ as the terminal limit at t → ∞. □
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E Portfolio choice with time-varying discounting

In this section, I derive the portfolio choice of the agents and characterize their value functions

under a specification without wealth migration and with subjective discount rates that vary with

wealth. The main takeaway from this exercise is that portfolio choice and aggregate consumption

are the same as in the baseline.

Regular country savers. I start with the savers from regular countries. The proposition below

characterizes the solution to their problem in equation (A.40).

Proposition 4. Given the time paths of the global interest rate rt, the special country’s wealth

ŵt, and the drift and volatility of the excess return process (µR
it , σ

R
it ),

Vit = log(ϱitwit) + κ(wit, t) (A.81)

where κ(wit, t) satisfies a partial differential equation. Consumption and portfolio choice are

cit = ϱitwit (A.82)

θit = min

{
θ,

µR
it

(σR
it )

2

}
(A.83)

Proof of Proposition 4. Since there is no aggregate uncertainty, state variables for a saver in

country i are her own wealth wit, aggregate wealth of her country wit, and time t. Dropping the

subscript i, define the drift and volatility of wit and wit:

dw = µw(w,w, t; c, θ)dt+ σw(w,w, t; θ)dZ (A.84)

dw = µw(w, t)dt+ σw(w, t)dZ (A.85)

The saver correctly assesses the functions µw(w, t) and σw(w, t) but does not internalize the effect

of her choices on w. The drift and volatility of individual wealth depend on consumption and

portfolio choice (c, θ):

µw(w,w, t; c, θ) = r(t)w − c+ θµR(w, t)w (A.86)

σw(w,w, t; θ) = θσR(w, t)w (A.87)

Here the dependence on time comes from the global interest rate r(t), the net worth of the special

country ŵ(t), and time-dependent terms µR(w, t) and σR(w, t). The HJB equation for the saver’s
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value V (w,w, t) is, suppressing the arguments,

ϱV − ∂tV = max
c,θ≤θ

ϱ log(c) + µw(w,w, t; c, θ)∂wV +
σw(w,w, t; θ)

2

2
∂wwV

+ µw(w, t)∂wV +
σw(w, t)

2

2
∂wwV + σw(w, t)σw(w,w, t; θ)∂wwV (A.88)

Now guess that the value function V (w,w, t) has the following form:

V (w,w, t) = log(w) + log(ϱ(w, t)) + κ(w, t) (A.89)

Plugging this into equation (A.88) and suppressing arguments of ϱ(w, t) again,

ϱ log(ϱw) + ϱκ(w, t)− ∂tκ(w, t) = max
c,θ≤θ

ϱ log(c) +
µw(w,w, t; c, θ)

w
− σw(w,w, t; θ)

2

2w2

+ µw(w, t)∂wκ(w, t) +
σw(w, t)

2

2
∂wwκ(w, t) (A.90)

Notice that the cross-derivative term drops out. Now using the functional forms for µw(w,w, t; c, θ)

and σw(w,w, t; θ) from equation (A.86) and equation (A.87), the optimal choices are

c∗ = ϱ(w, t)w (A.91)

θ∗ = min

{
µR(w, t)

σR(w, t)2
, θ

}
(A.92)

This shows that savers consume a constant fraction of their wealth and choose a mean-variance

portfolio whenever they can.

To get the partial differential equation that describes κ(w, t), use the consistency requirement

w = w, which also implies µw(w, t) = µw(w,w, t; c
∗, θ∗) and σw(w, t) = σw(w,w, t; θ

∗). Plugging

this into equation (A.91) and equation (A.90),

ϱκ(w, t)− ∂tκ(w, t) =
µw(w, t)

w
−

σw(w, t)
2

2w2
+ µw(w, t)∂wκ(w, t) +

σw(w, t)
2

2
∂wwκ(w, t) (A.93)

Boundary conditions for this equation in general depend on the properties of loadings µR(w, t)

and σR(w, t). Plugging the optimal choice of controls and the functional form of ϱ(w, t) in equa-

tion (A.91) and equation (A.92),

µw(w, t) = (r(t)− ρ− λ)w + λ̂ŵ(t) + min

{
µR(w, t)

σR(w, t)2
, θ

}
µR(w, t)w (A.94)

σw(w, t) = min

{
µR(w, t)

σR(w, t)2
, θ

}
σR(w, t)w (A.95)
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At w = 0, the drift of wealth is not equal to zero. This property helps avoid w = 0 being

an absorbing state. However, κ(w, t) might diverge around small w. Assuming that µR(w, t) is

bounded, the limiting behavior of κ(w, t) around w = 0 is

lim
x→0

κ(x, t)

log(x)
= −1 (A.96)

Assuming that µR(w, t)/σR(w, t) approaches zero as w → ∞,

lim
x→∞

ϱ(x, t)κ(x, t)− ∂tκ(x, t) = r(t)− ρ− λ (A.97)

The last remaining piece is a suitable initial or terminal condition. In practice, I will use the

steady-state value of κ(w, t) as the limiting terminal condition at infinity. Assuming that µR(w, t)

is bounded and µR(w, t)/σR(w, t) → 0 as w → ∞, this completes the characterization of κ(w, t)

given the general equilibrium objects r(t), ŵ(t), µR(w, t), and σR(w, t). □

Problem of the intermediary. The next proposition deals with the problem of the intermediary,

which is also the special country’s saver.

Proposition 5. Fix the number of regular countries at n. Given the path of the global interest

rate rt and the vector xt of aggregate wealth in every country including ŵt, the value function of

an individual special country saver is

V̂
(n)
t = log(ϱ̂tŵt) + κ̂(n)(xt, t) (A.98)

The function κ̂
(n)
t solves a first-order ordinary differential equation. The choice of portfolio weights

and drift correction for each country i is

θ̂
(n)
it =

γ̂tη(wit)

1 + γ̂tη(wit)
· µR

it

(σR
it )

2
(A.99)

ξ
(n)
it =

1

γ̂tη(wit)
· f (n)

it σR
it =

1

1 + γ̂tη(wit)
· µ

R
it

σR
it

(A.100)

Proof of Proposition 5. Fix the number of regular countries n. The state variables of the global

bank are its wealth ŵ, a vector x that combines aggregate special country wealth ŵ and all other

(wi), and time t that summarizes all other variables. The evolution of individual wealth ŵ is

dŵ = (rtŵt − ĉt)dt+
∑
i

fitŵt((µ
R
it − σR

itξit)dt+ σR
itdZ̃it) + θ̂tŵtdR̂t (A.101)
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Combine all (dZ̃it) into a vector dZ̃t. Aggregate vector x evolves as

dx = µx(x, t)dt+ σx(x, t)dZ̃t (A.102)

The HJB equation for V̂ (ŵ, x, t) is, suppressing arguments,

ϱ̂V̂ − ∂tV̂ = max
ĉ,θ̂,(θ̂i)

min
(ξi)

ϱ̂ log(ĉ) +
γ̂(t)

2

∑
i

η(wit)ξ
2
i + µŵ(ŵ, x, t; ĉ, θ̂, (θ̂i, ξi))∂ŵV̂ + µx(x, t)

′∂xV̂

+
σŵ(ŵ, x, t; (θ̂i))

2

2
∂ŵŵV +

1

2
tr(σx(x, t)

′∂xx′V σx(x, t)) + σŵx(ŵ, x, t; (θ̂i))
′∂ŵxV (A.103)

Here the drift and variance of ŵ conditional on controls c, θ̂, (θ̂i), and (ξi) are

µŵ(ŵ, x, t; ĉ, θ̂, (θ̂i, ξi)) = (r(t) + θ̂Et[dR̂t])ŵ − c+
∑
i

ŵθ̂i(µ
R
it − ξiσ

R
it ) (A.104)

σŵ(ŵ, x, t; (θ̂i))
2 = ŵ2

∑
i

θ̂2i (σ
R
it )

2 (A.105)

σŵx(ŵ, x, t; (θ̂i)) = ŵσx(x, t)v(x, t, (θ̂i)) (A.106)

The vector v(x, t, (θ̂i)) in equation (A.106) collects the products (θ̂iσ
R
it ).

The solution for the weight on the special country’s tree θ̂ will only be finite if Et[dR̂t] = 0.

I assume that this is the case. The optimal weight θ̂∗ is not determined and does not affect the

value of the objective, so I will omit it from the notation for µŵ(ŵ, x, t; ĉ, θ̂
∗, (θ̂i, ξ

∗
i )) below.

The expressions for variance of dŵ and co-variance of dŵ and dŵ per unit of time in equa-

tion (A.105) and equation (A.106) use independence between dZ̃it.

Solving the minimization problem over (ξi),

ξ∗i =
1

γ̂(t)η(wit)
· θ̂iσR

it · ŵ∂ŵV̂ (A.107)

Plugging this into equation (A.123),

µŵ(ŵ, x, t; ĉ, (θ̂i, ξ
∗
i )) = r(t)ŵ − ĉ+

∑
i

(
ŵθ̂iµ

R
it − ∂ŵV̂

(ŵσR
it )

2

γ̂(t)η(wit)
θ̂2i

)
+

w(t)

ŵ(t)
λŵ (A.108)

The problem in equation (A.103) is now, suppressing the arguments of ϱ(x, t),

ϱ̂V̂ − ∂tV̂ = max
ĉ,(θ̂i)

ϱ̂ log(ĉ) +
(∂ŵV̂ )2

2γ̂(t)

∑
i

(ŵσR
it )

2

η(wit)
θ̂2i + µŵ(ŵ, x, t; ĉ, (θ̂i, ξ

∗
i ))∂ŵV̂ + µx(x, t)

′∂xV̂

+
σŵ(ŵ, x, t; (θ̂i))

2

2
∂ŵŵV̂ +

1

2
tr(σx(x, t)

′∂xx′V σx(x, t)) + σŵx(ŵ, x, t; (θ̂i))
′∂ŵxV̂ (A.109)

25



Plugging equation (A.108) and equation (A.105) into this,

ϱ̂V̂ − ∂tV̂ = max
ĉ,(θ̂i)

ϱ̂ log(ĉ)− ĉ∂ŵV̂ + ∂ŵV̂
∑
i

ŵµR
it θ̂i −

(∂ŵV̂ )2

2γ̂(t)

∑
i

(ŵσR
it )

2

η(wit)
θ̂2i

+ r(t)ŵ∂ŵV̂ + ŵ2
∑
i

θ̂2i (σ
R
it )

2

2
∂ŵŵV

+ µx(x, t)
′∂xV̂ +

1

2
tr(σx(x, t)

′∂xx′V σx(x, t)) + σŵx(ŵ, x, t; (θ̂i))
′∂ŵxV (A.110)

Guess that the value function V̂ (ŵ, x, t) has the following form

V̂ (ŵ, x, t) = log(ρ̂ŵ) + κ̂(x, t) (A.111)

This immediately leads to the optimal choice of consumption:

ĉ∗ = ϱ̂(x, t)ŵ (A.112)

Replacing this in equation (A.127) and using the functional form for ϱ̂(x, t),

ϱ̂κ̂(x, t)− ∂tκ̂(x, t) = max
(θ̂i)

∑
i

(
µR
it θ̂i −

(σR
it )

2

2γ̂(t)η(wit)
θ̂2i −

(σR
it )

2

2
θ̂2i

)
+ r(t)− ρ̂− λ̂+

λw(t)

ŵ(t)

+ µx(x, t)
′∂xκ̂(x, t) +

1

2
tr(σx(x, t)

′∂xx′κ̂(x, t)σx(x, t)) (A.113)

The optimal choice of portfolio weights (θ̂i) is

θ̂∗i =
γ̂(t)η(wit)

1 + γ̂(t)η(wit)
· µR

it

(σR
it )

2
(A.114)

This leads to the following expression for the optimal drift correction:

ξ∗i =
1

1 + γ̂(t)η(wit)
· µ

R
it

σR
it

(A.115)

The differential equation for κ̂(t) becomes

ϱ̂(x, t)κ̂(x, t)− ∂tκ̂(ŵ, t) =
1

2

∑
i

γ̂(t)η(wit)

1 + γ̂(t)η(wit)

(
µR
it

σR
it

)2

+ r(t)− ρ̂− λ̂+
λw(t)

ŵ(t)

+ µx(x, t)
′∂xκ̂(x, t) +

1

2
tr(σx(x, t)

′∂xx′κ̂(x, t)σx(x, t)) (A.116)

I use the steady-state value of κ̂ as the terminal limit at t → ∞. □
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F Alternative setup for the global banks

This section provides details of the bank’s problem in the continuous limit and an alternative way

to model the intermediary using a VAR-type constraint. To simplify notation, I do it in the setup

with wealth-dependent discount rates. Everything is the same in the setup with migration.

F.1 Continuous limit

The problem of the bank in the continuous world is

V̂t = max
{ĉs,θ̂s,fs}s≥t

inf
ξ̂{ξs}s≥t

EQ(ξ)
t

[∫ ∞

t

eϱ̂s(s−t)

(
ϱ̂t log(ĉs) +

γs
2

∫ 1

0

η(wis)ξ
2
isdi

)
ds

]
(A.117)

subject to the budget constraint

dŵ = (rtŵt − ĉt)dt+

∫ 1

0

θ̂itŵt((µ
R
it − σR

itξit)dt+ σR
itdZ̃it)di+ θ̂tŵtdR̂t (A.118)

The bank has access to a continuum of uncorrelated risky assets, so its payoffs are determinis-

tic. However, the bank has freedom to choose a model for uncertainty over each risky asset in its

portfolio. Marginal benefits of considering scenarios with more substantial losses (that is, marginal

benefits of increasing ξit) increase in portfolio weights θ̂it. But as the bank entertains more pes-

simistic models, marginal benefits of raising θ̂it itself decline. This brings decreasing returns into

the choice of portfolio weights, even though uncertainty can effectively be disregarded.

Proposition 6. Given the paths of the global interest rate rt, the special country’s aggregate

wealth ŵt, the drift and volatility of the excess return process (µR
it , σ

R
it ) for all i, the value function

of an individual special country saver is

V̂t = log(ϱ̂tŵt) + κ̂t (A.119)

The function κ̂t solves a first-order ordinary differential equation. The choice of drift correction

and portfolio weights for each country i is

θ̂it = γtη(wit) ·
µR
it

(σR
it )

2
(A.120)

ξit =
1

γtη(wit)
· θ̂itσR

it =
µR
it

σR
it

(A.121)

Portfolio choice of the bank is similar to that of the local savers in regular countries, being pro-

portional to mean over variance of returns. A common factor γtŵt applies to all regular countries.
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Movements in γt map into shifts in foreign demand for risky assets in all countries at once. It can

be interpreted as a risk-tolerance parameter. Infinite γt would make the bank essentially neutral

to risk, willing to take an arbitrarily large position in any asset that offers excess returns.

Interpreted literally as a cost parameter, high γt makes the penalty for considering alternative

models with large losses prohibitively high. Equation (A.138) shows that, for a fixed θ̂it, high γt

makes the bank stick closer to the baseline measure. With a smaller correction, marginal costs of

increasing θ̂it are lower, and the bank demands more risky assets for a given mean-variance ratio.

Why do correction terms ξit pick up the volatility of idiosyncratic returns if idiosyncratic

shocks wash out in aggregate? This is because alternative models chosen by the bank apply to the

fundamental dividend shocks dZit. A mistake in evaluating the expectation of the dividend shock

dZit translates to a mistake in evaluating the expectation of excess returns dRit = µR
itdt+ σR

itdZit,

which is what really matters for portfolio choice, and this latter mistake scales by σR
it .

Proof of Proposition 6. Since there is no aggregate uncertainty, the evolution of the aggregate

wealth in the special country ŵt and the distribution of (wit) can be summarized by time. The

HJB equation for V̂ (ŵ, t) is, suppressing arguments,

ϱ̂V̂ − ∂tV̂ = max
ĉ,θ̂,(fi)

min
(ξi)

ϱ̂ log(ĉ) +
γ(t)

2

∫ 1

0

η(wit)ξ
2
i di+ µŵ(ŵ, t; ĉ, θ̂, (fi, ξi))∂ŵV̂ (A.122)

Here the drift of ŵ conditional on controls c, θ̂, (fi), and (ξi) is

µŵ(ŵ, t; ĉ, θ̂, (fi, ξi)) = (r(t) + Et[θ̂dR̂t])ŵ − c+

∫ 1

0

ŵfi(µ
R
it − ξiσ

R
it )di (A.123)

The solution for the weight on the special country’s tree θ̂ will only be finite if Et[dR̂t] = 0. I will

assume that this is the case henceforth. The optimal weight θ̂∗ is not determined and does not

affect the value of the objective, so I will omit it from the notation for µŵ(ŵ, t; ĉ, θ̂∗, (fi, ξ
∗
i )) below.

Solving the minimization problem over (ξi),

ξ∗i =
1

γ(t)η(wit)
· fiσR

it · ŵ∂ŵV̂ (A.124)

Plugging this into equation (A.123),

µŵ(ŵ, t; ĉ, (fi, ξ
∗
i )) = r(t)ŵ − ĉ+

∫ 1

0

(
ŵfiµ

R
it − ∂ŵV̂

(ŵσR
it )

2

γ(t)η(wit)
f 2
i

)
di (A.125)

The problem in equation (A.122) is now, suppressing arguments,

ϱ̂V̂ − ∂tV̂ = max
ĉ,(fi)

ρ̂ log(ĉ) +
(∂ŵV̂ )2

2γ(t)

∫ 1

0

(ŵσR
it )

2

η(wit)
f 2
i di+ µŵ(ŵ, t; ĉ, (fi, ξ

∗
i ))∂ŵV̂ (A.126)
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Plugging equation (A.125) into this,

ϱ̂V̂ − ∂tV̂ = max
ĉ,(fi)

ϱ̂ log(ĉ) + (r(t)ŵ − ĉ)∂ŵV̂

+ ∂ŵV̂

∫ 1

0

ŵµR
itfidi−

(∂ŵV̂ )2

2γ(t)

∫ 1

0

(ŵσR
it )

2

η(wit)
f 2
i di (A.127)

Guess that the value function V̂ (ŵ, t) has the following form

V̂ (ŵ, t) = log(ϱ̂(t)ŵ) + κ̂(t) (A.128)

This immediately leads to the optimal choice of consumption:

ĉ∗ = ϱ̂(t)ŵ (A.129)

Replacing this in equation (A.127) and plugging the functional form for ϱ(t),

ϱ̂(t)κ̂(t)− κ̂′(t) = max
(fi)

∫ 1

0

(
µR
itfi −

(σR
it )

2

2γ(t)η(wit)
f 2
i

)
di+ r(t)− ρ̂− λ̂+

λw(t)

ŵ(t)
(A.130)

The optimal choice of portfolio weights (fi) is

f ∗
i = γ(t)η(wit) ·

µR
it

(σR
it )

2
(A.131)

The differential equation for κ̂(t) becomes

ϱ̂(t)κ̂(t)− κ̂′(t) =
γ(t)

2

∫ 1

0

η(wit)

(
µR
it

σR
it

)2

di+ r(t)− ρ̂− λ̂+
λw(t)

ŵ(t)
(A.132)

The last remaining piece is a suitable initial or terminal condition. In practice, I will use the

steady-state value of κ̂ as the terminal limit at t → ∞. □

F.2 VAR-type constraint

The bank with a VAR-type constraint solves

max
(ĉs,θ̂s,fs)s≥t

Et

[
ϱt

∫ ∞

t

eϱ̂s(s−t) log(ĉs)ds

]
(A.133)
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subject to a budget constraint

dŵt = (rtŵt − ĉt)dt+

∫ 1

0

θ̂itŵtdRitdi+ θ̂tŵtdR̂t (A.134)

and the following institutional or regulatory constraint:∫ 1

0

Vt[θ̂itdRit]η(wit)
−1di ≤ γt

∫ 1

0

Et[θ̂itdRit]di (A.135)

The next proposition characterizes the solution.

Proposition 7. Given the path of the global interest rate rt, the special country’s aggregate

wealth ŵt, the drift and volatility of the excess return processes (µR
it , σ

R
it ) for all i, the value function

of an individual special country saver with a VAR-type constraint is

V̂t = log(ϱ̂tŵt) + κ̂t (A.136)

The function κ̂t solves a first-order ordinary differential equation. The choice of drift correction

and portfolio weights for each country i is

θ̂it = γtη(wit) ·
µR
it

(σR
it )

2
(A.137)

ξit =
1

γtη(wit)
· θ̂itσR

it =
µR
it

σR
it

(A.138)

Proof of Proposition 7. Without aggregate uncertainty, the evolution of the aggregate special

country wealth ŵt and the cross-section of (wit) can be summarized by time. The HJB equation

for V̂ (ŵ, t) is, suppressing arguments,

ϱ̂V̂ − ∂tV̂ = max
ĉ,θ̂,(θ̂i)

ϱ̂ log(ĉ) + µŵ(ŵ, t; ĉ, θ̂, (fi, ξi))∂ŵV̂ (A.139)

s.t.

∫ 1

0

f 2
i (σ

R
it )

2η(wit)
−1di ≤ γt

∫ 1

0

fiµ
R
itdi (A.140)

Here the drift of ŵ conditional on controls c, θ̂, (fi), and (ξi) is

µŵ(ŵ, t; ĉ, θ̂, (fi, ξi)) = (r(t) + Et[θ̂dR̂t])ŵ − c+

∫ 1

0

ŵfiµ
R
itdi (A.141)

The solution for the weight on the special country’s tree θ̂ will only be finite if Et[dR̂t] = 0. I will

assume that this is the case henceforth. The optimal weight θ̂∗ is not determined and does not
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affect the value of the objective, so I will omit it from the notation for µŵ(ŵ, t; ĉ, θ̂∗, (fi, ξ
∗
i )) below.

Guess that the value function V̂ (ŵ, t) has the following form

V̂ (ŵ, t) = log(ϱ̂(t)ŵ) + κ̂(t) (A.142)

This immediately leads to the optimal choice of consumption:

ĉ∗ = ϱ̂(t)ŵ (A.143)

Plugging this and the functional form of ϱ(t) into equation (A.139),

ϱ̂(t)κ̂(t)− κ̂′(t) = max
(θ̂i)

∫ 1

0

fiµ
R
itdi+ r(t)− λ̂− ρ̂+ λ

w(t)

ŵ(t)
(A.144)

s.t.

∫ 1

0

f 2
i (σ

R
it )

2η(wit)
−1di ≤ γt

∫ 1

0

fiµ
R
itdi (A.145)

Let the multiplier on the constraint be ξ(t). The first-order condition for fi is

fi = η(wit)
µR
it

(σR
it )

2
· 1 + ξ(t)γ(t)

2ξ(t)
(A.146)

Plugging this into the constraint,

1− γ(t)2ξ(t)2

4ξ(t)2

∫ 1

0

η(wit)

(
µR
it

σR
it

)2

di ≤ 0 (A.147)

This holds with equality if ξ(t) > 0, so ξ(t) = 1/γ(t) and

f ∗
i = γ(t)η(wit)

µR
it

(σR
it )

2
(A.148)

Plugging this back into equation (A.144),

ϱ̂(t)κ̂(t)− κ̂′(t) = γ(t)

∫ 1

0

ηit

(
µR
it

σR
it

)2

di+ r(t)− λ̂− ρ̂+ λ
w(t)

ŵ(t)
(A.149)

The only remaining bit is the suitable initial or terminal condition for κ̂(·). In practice, I will use

the steady state as a terminal condition as a limit at t → ∞. □
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G Details of equilibrium

In this section, I provide details for the equilibrium section. First, I discuss the steady state

and a useful benchmark of unlimited risk-taking capacity in which there is complete risk-sharing

and no non-degenerate wealth distribution. This benchmark also illustrates the role of migration

between countries. Then, I provide justification for the equilibrium condition in equation (9) and

equation (A.150) that decomposes intermediary’s consumption in steady state:

ĉ = νq̂ + ν ·
∫

ĥ(w)dG(w)− r ·
∫

l(w)dG(w) +

∫
µp(w)ĥ(w)dG(w) (A.150)

I also provide a proof for Proposition 1.

Steady state. Define aggregate profit rates from risky assets π and π̂:

π

∫
wdG(w) =

∫
wθ(w)µR(w)dG(w) (A.151)

π̂ŵ =

∫
ŵf(w)µR(w)dG(w) (A.152)

Here π is the average expected excess return that regular countries receive on their trees, and π̂ is

the total expected excess return that the global bank receives on them. These profit rates allow

me to express the steady-state interest rate and aggregate wealth of regular and special countries.

Proposition 8. In the steady state, the interest rate is

r =
ρ+ λ+ ρ̂+ λ̂− π − π̂ −

√
(ρ+ λ− ρ̂− λ̂− π + π̂)2 + 4λλ̂

2
(A.153)

It decreases in both π and π̂ and is bounded between min{ρ − π, ρ̂ − π̂} and max{ρ − π, ρ̂ − π̂}.
The aggregate wealth of regular countries and that of the special country are given by∫

wdG(w) =
λ̂(ν + q̂ν̂)

ρλ̂+ ρ̂λ+ ρρ̂− ρ̂(r + π)
(A.154)

ŵ =
λ(ν + q̂ν̂)

ρλ̂+ ρ̂λ+ ρρ̂− ρ(r + π̂)
(A.155)

This proposition shows how the interest rate and aggregate wealth of regular and special coun-

tries depend on profit rates. This is useful for thinking about the benchmark limit γ → ∞. In this

limit, any positive expected excess returns lead the bank to assume an infinite position in risky

assets. Expected excess returns µR(w) then have to be zero in equilibrium, and π = π̂ = 0. Since

r decreases in both π and π̂, limited risk-taking capacity depresses the global interest rate.
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Holdings are well defined in this limit. Local savers are not willing to hold trees since there is

fundamental risk in the dividends but expected excess returns are zero. The global bank holds all

the risky assets and fully insures the regular countries. There is no wealth distribution among the

regular countries because they are not exposed to idiosyncratic shocks. Equation (A.154) in this

case shows wealth accumulated by each of them. Simplifying more, ρ = ρ̂ leads to r = ρ = ρ̂ and∫
wdG(w) =

λ̂

λ̂+ λ

ν + q̂ν̂

ρ
(A.156)

ŵ =
λ

λ̂+ λ

ν + q̂ν̂

ρ
(A.157)

Risk is perfectly diversified and there is no difference in time preferences, so wealth is simply the

present value of output split between the intermediary and the savers by migration. This is the only

way in which migration affects the aggregates. The technical reason to include it is that, without

it, w = 0 would be an absorbing state for regular countries, and the special country’s income would

be linear in its wealth ŵ, leaving no possibility for a well-defined invariant distribution. In my

calibration, I set net migration in the steady state to zero but allow for some gross flows.

Proofs. I now formulate equation (9) and equation (A.150) as propositions and prove them. I

also prove Proposition 1 and Proposition 8.

Before deriving the expression for the price and quantity of risk, it is useful to rearrange the

market clearing conditions for risky assets:

p(w, t) = wmin

{
θ,

µR(w, t)

σR(w, t)2

}
+ φ(t)η(w)

µR(w, t)

σR(w, t)2
(A.158)

Now I will show the equivalence between this and the price-quantity decomposition in equation (9).

Proposition 9. Equation (A.158) implies equation (9). That is,

p(w, t) = wmin

{
θ,

µR(w, t)

σR(w, t)2

}
+ φ(t)η(w)

µR(w, t)

σR(w, t)2
=⇒ (A.159)

µR(w, t)

σR(w, t)2
= max

{
p(w, t)

φ(t)η(w) + w
,
p(w, t)− θw

φ(t)η(w)

}
(A.160)

Proof of Proposition 9. Suppose that equation (A.158) holds. Use the equivalence

p(w, t)

φ(t)η(w) + w
≥ p(w, t)− θw

φ(t)η(w)
⇔ p(w, t)

φ(t)η(w) + w
≤ θ (A.161)
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Suppose µR(w, t)/σR(w, t)2 ≤ θ. Then, from equation (A.158) it follows that

µR(w, t)

σR(w, t)2
=

p(w, t)

φ(t)η(w) + w
(A.162)

This means that p(w, t)/(φ(t)η(w) + w) ≤ θ, so, from equation (A.161),

max

{
p(w, t)

φ(t)η(w) + w
,
p(w, t)− θw

φ(t)η(w)

}
=

p(w, t)

φ(t)η(w) + w
=

µR(w, t)

σR(w, t)2
(A.163)

Now suppose that µR(w, t)/σR(w, t)2 > θ. From equation (A.158) it follows that

µR(w, t)

σR(w, t)2
=

p(w, t)− θw

φ(t)η(w)
(A.164)

This means that p(w, t) − θw > θφ(t)η(w), so p(w, t)/(w + φ(t)η(w)) > θ. Then, from equa-

tion (A.161) it follows that

max

{
p(w, t)

φ(t)η(w) + w
,
p(w, t)− θw

φ(t)η(w)

}
=

p(w, t)− θw

φ(t)η(w)
=

µR(w, t)

σR(w, t)2
(A.165)

Thus, in any case,

max

{
p(w, t)

φ(t)η(w) + w
,
p(w, t)− θw

φ(t)η(w)

}
=

µR(w, t)

σR(w, t)2
(A.166)

This completes the proof. □

Proof of Proposition 1. Start with plugging the expressions for µR(w, t) and σR(w, t) into

equation (9). Rewriting it yields a formula for the risk premium in terms of price dynamics:

µp(w, t) + ν(t)

p(w, t)
− r(t) =

(σp(w, t) + σ)2

p(w, t)2
·max

{
p(w, t)

w + φ(t)η(w)
,
p(w, t)− θw

φ(t)η(w)

}
(A.167)

Using Itô’s lemma,

µp(w, t) = µw(w, t)∂wp(w, t) +
σw(w, t)2

2
∂wwp(w, t) + ∂tp(w, t) (A.168)

σp(w, t) = σw(w, t)∂wp(w, t) (A.169)
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Multiplying both sides of equation (A.167) by p(w, t),

µp(w, t) + ν(t)− p(w, t)r(t) + ∂tp(w, t) = (σp(w, t) + σ)2

·max

{
1

w + φ(t)η(w)
,

1

φ(t)η(w)

(
1− θw

p(w, t)

)}
(A.170)

Plugging the drift and volatility of prices,

µw(w, t)∂wp(w, t) +
σw(w, t)2

2
∂wwp(w, t) + ν(t)− p(w, t)r(t) + ∂tp(w, t) (A.171)

= (σw(w, t)∂wp(w, t) + σ)2 ·max

{
1

w + φ(t)η(w)
,

1

φ(t)η(w)

(
1− θw

p(w, t)

)}
Now rewrite the process for a regular country’s wealth in equation (A.41):

dw = (r(t)− ρ)wdt+ θ(w, t)wdR(w, t) + (λ̂ŵ(t)− λw)dt

= (r(t)− ρ− λ)wdt+ λ̂ŵ(t)dt+ wθ(w, t)µR(w, t)dt+ wθ(w, t)σR(w, t)dZ

= λ̂ŵ(t)dt+

(
r(t)(1− θ(w, t))− ρ− λ+ θ(w, t)

µp(w, t) + ν(t)

p(w, t)

)
wdt

+ wθ(w, t)
σp(w, t) + σ

p(w, t)
dZ (A.172)

From this, it follows that

σw(w, t) = wθ(w, t)
σp(w, t) + σ

p(w, t)
(A.173)

Plugging equation (A.169),

σw(w, t) = wθ(w, t)
σw(w, t)∂wp(w, t) + σ

p(w, t)
=

θ(w, t)wσ

p(w, t)− wθ(w, t)∂wp(w, t)

=
θ(w, t)wσ

p(w, t)(1− θ(w, t)ϵ(w, t))
(A.174)

Here ϵ(w, t) = w/p(w, t) · ∂wp(w, t) is the wealth elasticity of the price. This implies

(σw(w, t)∂wp(w, t) + σ)2 =

(
σ

1− θ(w, t)ϵ(w, t)

)2

(A.175)
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Plugging this into equation (A.171),

µw(w, t)∂wp(w, t) +
σw(w, t)2

2
∂wwp(w, t) + ν(t)− p(w, t)r(t) + ∂tp(w, t) (A.176)

=

(
σ

1− θ(w, t)ϵ(w, t)

)2

·max

{
1

w + φ(t)η(w)
,

1

φ(t)η(w)

(
1− θw

p(w, t)

)}
Define the risk-adjusted payoff y(w, t) as

y(w, t) = ν(t)−
(

σ

1− θ(w, t)ϵ(w, t)

)2

max

{
1

w + φ(t)η(w)
,

1

φ(t)η(w)

(
1− θw

p(w, t)

)}
(A.177)

Plugging leads to

r(t)p(w, t)− ∂wp(w, t) = y(w, t) + µw(w, t)∂wp(w, t) +
σw(w, t)2

2
∂wwp(w, t) (A.178)

This is the Kolmogorov backward equation (A.214) for prices. The Kolmogorov forward equa-

tion (A.215) for wealth follows from the fact that the wealth process is a diffusion. □

Proof of Proposition 8. Take the evolution of the special country’s wealth and integrate the

evolution of the regular countries’ wealth to get aggregate dynamics:

dŵ(t) = (r(t)− ρ̂)ŵ(t)dt+

∫ 1

0

ŵ(t)f(w, t)µR(w, t)dG(w, t)dt

+

(
λ

∫
wdG(w, t)− λ̂ŵ(t)

)
dt (A.179)∫

dwdG(w, t) = (r(t)− ρ)

∫
wdG(w, t)dt+

∫
wθ(w, t)µR(w, t)dG(w, t)dt

+

(
λ̂ŵ(t)− λ

∫
wdG(w, t)

)
dt (A.180)

In the steady state, the left-hand side is zero in both of these equations:

0 = (r − ρ̂)ŵ +

∫ 1

0

ŵf(w)µR(w)dG(w) +

(
λ

∫
wdG(w)− λ̂ŵ

)
= (r − ρ̂)ŵ + π̂ŵ + λ

∫
wdG(w)− λ̂ŵ (A.181)

0 = (r − ρ)

∫
wdG(w) +

∫
wθ(w)µR(w)dG(w) +

(
λ̂ŵ − λ

∫
wdG(w)

)
= (r − ρ)

∫
wdG(w) + π

∫
wdG(w) + λ̂ŵ − λ

∫
wdG(w) (A.182)
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This leads to

ŵ =

∫
wdG(w)

λ

λ̂+ ρ̂− r − π̂
= ŵ

λ̂

λ+ ρ− r − π

λ

λ̂+ ρ̂− r − π̂
(A.183)

Reorganize this as a quadratic equation

(r + π − ρ− λ)(r + π̂ − ρ̂− λ̂) = λλ̂ (A.184)

The solution is

r =
α + α̂±

√
(α− α̂)2 + 4λλ̂

2
(A.185)

Here α = ρ+ λ− π and α̂ = ρ̂+ λ̂− π̂. Take the root with a plus and consider r − α and r − α̂:

r − α =
(α̂− α) +

√
(α̂− α)2 + 4λλ̂

2
> α̂− α (A.186)

r − α̂ =
(α− α̂) +

√
(α− α̂)2 + 4λλ̂

2
> α− α̂ (A.187)

These imply that r > α and r > α̂, which is not possible since ŵ and
∫
wdG(w) would be negative

in this case. The right root is then that with a minus. Plugging this expression for the interest

rate into

ŵ =
λ

λ̂+ ρ̂− r − π̂

∫
wdG(w) (A.188)∫

wdG =
λ̂

λ+ ρ− r − π
ŵ (A.189)

completes the proof. □

Proposition 10. In the steady state,

ĉ = νq̂ + ν ·
∫

ĥ(w)dG(w)− r ·
∫
(1− θ(w))wdG(w) +

∫
µp(w)ĥ(w)dG(w) (A.190)

Proof of Proposition 10 The wealth accumulation of the global bank in the steady state can be
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rewritten as

dŵ = (rŵ − ĉ)dt+

∫
f(w)ŵdR(w)dG(w) + (λw − λ̂ŵ)dt

= (rŵ − ĉ)dt− rŵdt ·
∫

f(w)dG(w) + νŵdt ·
∫

ĥ(w)dG(w)

+ dt ·
∫

µp(w)ĥ(w)dG(w) + (λw − λ̂ŵ)dt (A.191)

This uses the fact that dR̂ = 0 in equilibrium, so the special asset does not contribute to wealth

accumulation. The second line simply applies the definition of dR(w) = (µp(w) + ν)/p(w)− r and

the definition of h(w): ŵf(w) = p(w)h(w). The balance sheet of the global bank is

ŵ =

∫
p(w)ĥ(w)dG(w) + p̂q̂ −

∫
(1− θ(w))wdG(w) (A.192)

The bank’s wealth is its consolidated position in risky assets and its position in the safe asset less

bonds outstanding. Plugging this and using the steady-state relations p̂ = ν̂/r (no risk premium

on the safe asset), dŵ = 0 (no fluctuations in the intermediary’s wealth), and λ̂ŵ = λw (no net

migration),

ĉ = νq̂ + ν ·
∫

ĥ(w)dG(w)− r ·
∫
(1− θ(w))wdG(w) +

∫
µp(w)ĥ(w)dG(w) (A.193)

This completes the proof. □
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H Details for calibration and estimation

In this section, I explain the algorithm for calibration and estimation. I first calibrate the steady-

state version of the model using four aggregate moments and a panel of external assets and liabilities

from IFS data provided by the IMF. Then, I use two aggregate series and sequence-space Jacobians

to estimate the parameters of aggregate shock processes by likelihood maximization.

Calibration. I construct the ratio of assets to liabilities:

Rit =
Ait

Lit

(A.194)

I measure the moments of its distribution in the data using the following procedure:

• First, I take unbalanced panels for Ait and Lit starting in 1990.

• I then smooth out assets and liabilities by replacing the value in each quarter with the mean

value over the last four quarters.

• For every country that eventually appears in the sample, I create a weight that is inversely

proportional to the duration of its presence in the sample. This allows me to correct for the

over-representation of advanced economies with relatively large assets and liabilities

Figure A.8 shows the model fit for the distribution.

Figure A.8: Model-generated distributions (red)
and data for the ratio of external assets to ex-
ternal liabilities.

Table 17: Average excess returns in emerging
markets and advanced economies. Emerging
markets are those constrained: θ(w) = θ

advanced economies 0.676pp

emerging markets 2.893pp

difference 2.218pp

I set the net migration flows to zero in the steady state:

λ

∫
wdG(w) = λ̂ŵ (A.195)
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Given all other parameters, this pins down λ̂. I also set ν = ν̂, where ν̂ is the dividend rate in the

special country. The level of dividends can be normalized using the following symmetry property.

Consider one model parameterized by eleven parameters (ρ, ρ̂, λ, λ̂, ν, ν̂, θ, σ, γ, q̂, ζ) and another

one parameterized by (ρ, ρ̂, λ, λ̂, ν∗, ν̂∗, θ, σ∗, γ∗, q̂, ζ∗) such that

ν∗ = αν (A.196)

ν̂∗ = αν̂ (A.197)

σ∗ = ασ (A.198)

ζ∗ =
αζ

1 + (α− 1)ζ
(A.199)

γ∗ = γ
1 + (α− 1)ζ

α
(A.200)

The prices and quantities corresponding to the original and the starred model satisfy the following:

ŵ∗(t) = αŵ(t) (A.201)

p∗(αw, t) = αp(w, t) (A.202)

f ∗(αw, t) = f(w, t) (A.203)

Multiplying expected dividends and their volatility by the same number simply rescales wealth and

asset prices if γ and ζ are suitably transformed. The same transformation as in equation (A.202)

applies to the loadings of prices and wealth processes (µp(w, t), µw(w, t), σp(w, t), σw(w, t)), while

instantaneous returns (µR(w, t), σR(w, t)) follow the pattern in equation (A.203). Interest rates

remain the same. This can be verified by noting that

φ(t)η(αw) = ŵ(t)γ(t)η + ŵ(t)γ(t)(1− η) · αw (A.204)

Applying the transformations above to equation (9),

ŵ∗(t)γ∗(t)ζ∗ = αŵ(t)γ(t)ζ (A.205)

ŵ∗(t)γ∗(t)(1− ζ∗) · αw = ŵ(t)γ(t)(1− ζ) · αw (A.206)

This means

µ∗
R(αw, t)

σ∗
R(αw, t)

= max

{
p∗(αw, t)

φ∗(t)η∗(αw) + αw
,
p∗(αw, t)− θαw

φ∗(t)η∗(αw)

}
= max

{
αp(w, t)

αφ(t)η(w) + αw
,
αp(w, t)− θαw

αφ(t)η(w)

}
=

µR(w, t)

σR(w, t)
(A.207)
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Portfolio choice for αw is hence the same under the starred parameterization as that for w un-

der the original one. The upshot is that equation (A.201) and equation (A.202) imply that

(µp(w, t), µw(w, t), σp(w, t), σw(w, t)) transform in the same way as in equation (A.202), which veri-

fies equation (A.203) since consumption follows the same proportional rule under both parametriza-

tions and migration scales with ŵ(t). The evolution of ŵ(t) then shows that equation (A.201) is

satisfied, and equation (A.214) shows that equation (A.202) holds.

This symmetry means that choosing a number ν = ν̂ is simply a normalization. The remaining

parameters are an outcome of numerical optimization, where I look for a configuration that mini-

mizes the quadratic distance between the targets and their model analogs in Table 1. All moments

are assigned the same weight.

H.1 Calibration of the model in Section 2

The model in Section 2 is a special case of the full model with θ = ∞ and ζ = 1, which makes the

intermediary’s weights constant: η(w) = 1 for all w. The special country’s tree is also not in this

version of the model: q̂ = 0. Other parameters are in Table 18.

Table 18: parameters for the model is Section 2.

parameter value meaning

regular countries

ρ 0.0600 discount rate

λ 0.0200 emigration rate

ν 0.0500 output rate

σ 0.1000 output volatility

θ ∞ upper limit on risky asset share

special country

ρ̂ 0.0960 discount rate

λ̂ 0.0811 emigration rate

q̂ 0.0000 asset stock

ζ 1.0000 country weight intercept

γ 1.4918 risk-taking capacity

I choose parameters for regular countries arbitrarily and then find parameters for the special

country in order to set net migration flows to zero, like in the full model. The other two targets

are the interest rate of 3% annually and the US wealth share of 20%.

The average risk premium comes out to be 4 percentage points, and the average foreign own-

ership share for the trees is 30%.
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H.2 Details of estimation

My estimation procedure relies on the mapping from sequences of shocks {dWt} to the sequences of

first-order deviations {m̃t, p̃t}. This mapping is given by the sequence-space Jacobians calculated

at the steady state and parameters P = (µγ, µν , σγ1, σγ2, σν2). Given a potentially large sequence

{dWt} and a guess of P , I can compute a large sequence {m̃t, p̃t} and calculate its time-series

moments M(P , {dWt}). I can then update the guess of P to make these model-implied moments

closer to Mdata, the moments from the data.

Getting a point estimate for parameters consists of these steps:

• compute the targeted moments in the data Mdata

• simulate a large sequence of shocks {dW (t)}

• given {dW (t)}, search over parameters P = (µγ, µν , σγ1, σγ2, σν2) that minimize the distance

between model-implied moments M(P , {dW (t)}) and Mdata

Having obtained a point estimate P̂ = (µ̂γ, µ̂ν , σ̂γ1, σ̂γ2, σ̂ν2), I use bootstrap to estimate stan-

dard errors. This procedure replaces true data with simulations created using P̂ and re-estimates

these parameters many times. The steps are the following: for b from 1 to B,

• simulate a sequence {dWt}b

• using {dWt}b and the point estimate P̂ , compute M“data”,b = M(P̂ , {dWt}b)

• get a point estimate P̂b by minimizing the distance between M(P , {dW (t)}) and M“data”,b

over parameters P

When this is completed B times, I have a sample of estimates {P̂b}Bb=1. I then use the stan-

dard deviations of estimates in this sample as standard errors for the original point estimates P̂ .

Figure A.9 shows point estimates and bootstrapped marginal distributions.

Figure A.9: Point estimates of parameters and the bootstrapped marginal distributions.
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Quarterly magnitudes. To get a sense of magnitude for shocks to γ(t) and (ν(t), ν̂(t)) over

discrete time periods, one can solve the stochastic differential equations:

γ̃(τ) = e−µγτ γ̃(0) +

∫ τ

0

e−µγsσγ1dW1(s) +

∫ τ

0

e−µγsσγ2dW2(s)

ν̃(τ) = e−µντ ν̃(0) +

∫ τ

0

e−µνsσγ2dW2(s) (A.208)

Setting τ = 0.25 yields a quarterly model and τ = 1 makes it annual. Substituting the stochastic

integrals random variables and defining parameters,

γ̃t+1 = ργ γ̃t + ςγ1ε1,t+1 + ςγ2ε2,t+1 (A.209)

ν̃t+1 = ρν ν̃t + ςν2ε2,t+1 (A.210)

Here the persistence parameters are ργ = e−µγτ , ρν = e−µντ , random variables (ε1,t+1, ε2,t+1) are

independent standard normals, and the volatilities of innovations are

ςγ1 = σγ1

√
V
[∫ τ

0

e−µγsdW1(s)

]
= σγ1

√
E
[∫ τ

0

e−2µγsds

]
= σγ1

√
1− e−2µγτ

2µγ

(A.211)

Similarly,

ςγ2 = σγ2

√
1− e−2µγτ

2µγ

(A.212)

ςν2 = σν2

√
1− e−2µντ

2µν

(A.213)

It is more natural to report these parameters as a share of the steady-state values γ and ν. Table 19

reports them for the quarterly and annual frequencies.

Table 19: Finite time parameters.

ργ ρν ςγ1 ςγ2 ςν2

quarterly 0.941 0.824 0.065 · γ −0.044 · γ 0.022 · ν
annual 0.783 0.460 0.125 · γ 0.084 · γ 0.038 · ν

The correlation between innovations to γ̃t+1 and ν̃t+1 is 0.56 at all horizons.
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I Numerical solution algorithm

Here I briefly describe the algorithm I use to solve the system of partial differential equations in

Proposition 1. The system is for prices p(w, t) and density g(w, t):

r(t)p(w, t)− ∂tp(w, t) = y(w, t) + µw(w, t)∂wp(w, t) +
1

2
σw(w, t)

2∂wwp(w, t) (A.214)

∂tg(w, t) = −∂w[µw(w, t)g(w, t)] +
1

2
∂ww[σw(w, t)

2p(w, t)] (A.215)

Here the function y(w, t) is the risk-adjusted payoff:

y(w, t) = ν(t)−
(

σ

1− ϵ(w, t)θ(w, t)

)2

max

{
1

w + φ(t)η(w)
,

1

φ(t)η(w)

(
1− θw

p(w, t)

)}
(A.216)

with ϵ(w, t) = w/p(w, t) · ∂wp(w, t) being the wealth elasticity of price.

The partial differential equation (A.214) is non-linear. The price p(w, t) is explicitly included in

y(w, t). Moreover, the drift and volatility of wealth µw(w, t) and σw(w, t) depend on it. Plugging

the optimal policy of investors,

µw(w, t) = (r(t)− ρ− λ)w + λ̂ŵ(t) + min

{
µR(w, t)

σR(w, t)2
, θ

}
µR(w, t)w (A.217)

σw(w, t) = min

{
µR(w, t)

σR(w, t)2
, θ

}
σR(w, t)w (A.218)

Here the mean and volatility of returns are

µR(w, t) =
µp(w, t) + ν(t)

p(w, t)
− r(t) (A.219)

σR(w, t) =
σp(w, t) + σ

p(w, t)
(A.220)

The drift and volatility of prices, µp(w, t) and σp(w, t), in turn can be expressed in terms of µw(w, t)

and σw(w, t) using Itô’s lemma:

µp(w, t) = ∂tp(w, t) + µw(w, t)∂wp(w, t) +
σw(w, t)

2

2
∂wwp(w, t) (A.221)

σp(w, t) = σw(w, t)∂wp(w, t) (A.222)

I next describe the iterative algorithm that I use to solve for p(w, t) as a fixed point of equa-

tion (A.214). I first describe the steady state, where all functions just have w as their argument,

and both equation (A.214) and equation (A.215) are ODE, not PDE. After that, I describe the

transition dynamics.
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My numerical solution requires a discretization of time and wealth spaces. In addition, I use

a monotone transformation of the wealth scale from [0,∞) onto [0, 1] by mapping w to another

function x(w) = 1− e−w. This allows for better approximations at large levels of wealth, which is

useful given that one of the boundary conditions for p(w, t) is at infinity. All equations have to be

corrected for this transformation using the chain rule and Itô’s lemma.

Steady state. To compute the price functions in the steady state, I use a two-tier loop. In the

outer loop, I solve for r, ŵ, and G(·), the distribution of w that produce all other quantities that

clear markets. In the inner loop, I fix r, ŵ, and φ = γŵ and solve for prices. Given these numbers,

I iterate on the price functions in the following way:

• guess p(n)(w), µ
(n)
w (w), and σ

(n)
w (w)

• compute y(w) and solve the time-invariant version of equation (A.214), which is on ODE

instead of a PDE in the steady state, to get the new guess p(n+1)(w)

• use the new guess p(n+1)(w) and old guesses µ
(n)
w (w) and σ

(n)
w (w) in equation (A.221) and

equation (A.222) get µp(w) and σp(w)

• use the new guess p(n+1)(w) and the newly computed µp(w) and σp(w) to compute µR(w)

and σR(w), the mean and standard deviation of excess returns in equation (A.219) and

equation (A.220)

• use the newly computed µR(w) and σR(w) to compute the new guesses µ
(n+1)
w (w) and

σ
(n+1)
w (w) of the drift and volatility of wealth in equation (A.217) and equation (A.218)

• stop if old and new guesses of p(w), µw(w), and σw(w) are sufficiently close

In the outer loop, I use the last guesses for µw(w) and σw(w) to solve equation (A.215). This

allows me to compute the steady-state value of the average regular country wealth
∫
wdG(w) and

the total profits of the intermediary, which also takes in the last guess of µR(w). I then compute

the steady-state value of ŵ using the fact that wealth accumulation in the special country is zero:

consumption ρ̂ŵ offsets profits, and net migration is zero. Given the new guess for ŵ, I compute

the new guess for r using the intermediary’s balance sheet:

ŵ =
ν

r
q̂ +

∫
p(w)h(w)dG(w)−

∫
b(w)dG(w) (A.223)

Here the ratio ν/r is the steady-state price of the safe asset.

Transition dynamics. I discretize the time and solve for sequences of r(t) and ŵ(t). Given

guesses for these sequences, I also have a guess for the sequence φ(t).
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There is an inner loop at all nodes t of the time grid where I solve for the current price vector

p(w, t) and the vectors of wealth drift and volatilities µw(w, t) and σw(w, t). This inner loop is

exactly the same as in solving for the steady state price.

In the outer loop, I compute the flow profits of all investors, the evolution of wealth in all coun-

tries, and migration flows using (µp(w, t), σp(w, t), µR(w, t), σR(w, t), µw(w, t), σw(w, t))t≥0. This

calculation leads to the new guess of the path of the special country’s wealth (ŵ(t))t≥0 and the

global factor (φ(t))t≥0. The new guess of the interest rate sequence (r(t))t≥0 comes from differen-

tiating the consumption goods market clearing condition with respect to time:

ρ

∫
µw(w, t)dG(w, t) + ρ̂ŵ′(t) = ν ′(t) + q̂ν̂ ′(t) (A.224)

The interest rate can be extracted from this equation given profit flows coming from expected

excess returns µR(w, t). I then use the sequence space Jacobians to update the guesses.
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J Details for impulse responses

The decomposition of the impact response of asset prices relies on the following fact. It is enough to

know the future path of dividends (ν(t))t≥0, the interest rate (r(t))t≥0, the global factor (φ(t))t≥0,

and the intermediary’s wealth (ŵ(t))t≥0 to calculate the whole path of (p(w, t))t≥0. The interme-

diary’s wealth only matters for migration flows, given the path of (φ(t))t≥0.

Taking advantage of this, I produce decompositions on Figure 8 and the same decomposition

for the shock to risk-taking capacity. First, for the shock to risk-taking capacity, I compute two

counterfactual price sequences: one with r(t) set at the steady-state r (this isolates the effect of

φ(t)), and the other with φ(t) set at the steady-state φ, isolates the effect of r(t). In both cases,

all other sequences are taken from the baseline general equilibrium transition dynamics.

For the output shock, I compute three counterfactual price sequences. One is with r(t) and

φ(t) both held at the steady-state levels. This isolates the effect of ν(t) that directly enters the

Kolmogorov backward equation for prices. Another holds r(t) and ν(t) at the steady-state level,

isolating the effect of φ(t), and the last one isolates the effect of r(t) by taking in constant (ν, φ).

These decompositions are not additive, since I consider relatively large shocks, and prices are

highly non-linear in r(t), φ(t), and ν(t).

Expectations in cross-section. Panel (a) on Figure 7 provides cross-sections of expected hold-

ings at three different points in time, t = 0, t = 0.25, and t = 1, conditional on w0. The value of

holdings at t = 0 conditional on w0. Holdings as a function of (w, t) are known too. But wealth

itself changes between t = 0 and t = 0.25, both due to aggregate drift and idiosyncratic shocks.

Consider any function z(w, t). The time-s expectation at time t, denoted by Z(w, t, s), is

Z(w, t, s) = E
[
z(ws, s)

∣∣∣wt = w
]

(A.225)

This object satisfies the following HJB equation:

0 = ∂tZ(w, t, s) + µw(w, t)∂wZ(w, t, s) +
σw(w, t)

2

2
∂wwZ(w, t, s) (A.226)

The terminal condition is Z(w, s, s) = z(w, s). I compute holdings of domestic assets τ ahead

expected at t = 0 by solving this partial differential equation numerically and evaluating Z(w, 0, τ).

Another type of cross-section of expectations is an expected average over time. Panel (b) on

Figure 7 shows the cross-section of expected wealth accumulation over the first quarter, decompos-

ing it into parts. These expectations can be computed as follows. Take any time-varying function

z̃(w, t). The expected time average between t and s conditional on wt, denoted by Z̃(w, t, s), is

Z̃(w, t, s) = E
[∫ s

t

z̃(w, τ)dτ
∣∣∣wt = w

]
(A.227)
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This object satisfies the following HJB equation:

0 = z̃(w, t)− ∂tZ̃(w, t, s) + µw(w, t)∂wZ̃(w, t, s) +
σw(w, t)

2

2
∂wwZ̃(w, t, s) (A.228)

The terminal condition is Z̃(w, s, s) = 0. I evaluate Z̃(w, 0, τ) for panel (b) on Figure 7.

Note that the expectation functions Z(w, t, s) is essentially nested in Z̃(w, t, s) if one is willing

to consider the function z(w, t) that incorporates Dirac’s delta function:

z̃(w, t) = δ(t− s)z(w, t) (A.229)

Importantly, when plotting panel (a) and panel (b) on Figure 7, I account for initial wealth reval-

uation. Specifically, instead of Z(w, 0, τ) and Z̃(w, 0, τ), I plot Z(W (w), 0, τ) and Z̃(W (w), 0, τ),

where the function W (·) maps wealth just before the shock hits into the level after revaluation.

Revaluation. Wealth revaluation in regular countries happens because asset prices jump on

impact. The function W (·) solves the following functional equation:

W (w) = b(w) + p(W (w), 0)h(w) (A.230)

After revaluation, wealth consists of the old, steady-state level of bond holdings b(w) and old

holdings of risky assets h(w) evaluated at the new price p(W (w), 0). The holdings have to be

taken from just before the shock since revaluation happens before portfolios can be rebalanced.

The absence of t as an argument in h(w) and l(w) means that these are steady-state functions.

The price is evaluated at W (w) since the country instantly becomes one with wealth W (w) instead

of w.

Wealth revaluation thus comes from two sources. First, price as a function of wealth changes

relative to the steady state: p(w, 0) ̸= p(w). Second, wealth itself changes because changing prices

revalue it: W (w) ̸= w. In my numerical procedure, I solve for W (w) given p(·) as a function of

(w, t) by iterating on guesses W n(·):

W n+1(w) = b(w) + p(W n(w), 0)h(w) (A.231)

I evaluate the new guess W n+1(·) on the grid by interpolation and do it until convergence.
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K Additional details for shocks

This section provides additional details for the shock to risk-taking capacity of the intermediaries

and the output shock.

Adjustment to the risk-taking capacity shock in the special country. The special coun-

try’s net foreign assets position (NFA) falls on impact because of the losses it makes on its risky

portfolio. Panel (a) on Figure A.10 shows the path of NFA over the special country’s GDP over

time after the shock to γ.

(a) Special country’s NFA. (b) Components of wealth accumulation.

Figure A.10: Responses of the special country’s NFA and components of net income, percent of
GDP. Panel (a): change in NFA decomposed into price changes and net assets accumulation. Panel
(b): changes in dividends from regular countries, interest payments to them, and asset prices.

The evolution after t = 0 is due to changes in asset prices and accumulation of assets net of

incurrence of liabilities. The capital gains component k(t) is given by a k(0) < 0 and

k̇(t) =

∫
µp(w, t)ĥ(w, t)dG(w, t)−

∫
µp(w)ĥ(w)dG(w)

The subtracted term corresponds to the steady state. Capital gains start off negative at t = 0,

reflecting the losses made on impact. NFA then reverses, and valuation changes contribute to it.

Asset accumulation accounts for purchases of shares in risky assets that do not result in addi-

tional deposits made by regular countries. Panel (b) sheds light on the sources of these purchases.

It plots the changes in four components of the intermediary’s wealth accumulation: dividends

from assets in regular countries, interest payments (this component contributes negatively to net

income), capital gains on risky assets, and capital gains on the safe asset.

Interest payments to regular countries decline by more than dividends flowing out of those

countries. The intermediary uses this difference to buy back the shares that local investors in rich

countries purchased on impact while retrenching. Changes in consumption are much smaller in

magnitude, so almost all of this extra income goes to financing asset purchases. Dividends from
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the safe asset remain constant and are not shown in the picture. Capital gains on risky assets are

positive, and those on the safe asset are negative as prices revert back to normal.

Shock to output. Figure A.11 and Figure A.12 show density-weighted losses made on assets as

a percentage of global GDP. The distributions are remarkably similar. Losses on risky assets are

shared between regular countries and the intermediary in roughly the same proportions after both

shocks, and the fall in the safe asset price p̂(t) is only marginally larger (relative to other assets)

when its dividends are hit.

This shows how important the global intermediary is for risk-sharing. Even though it is the

only owner of the safe asset, the fall in the safe asset’s dividends has largely the same consequences

for the global wealth distribution as a shock to ν, adjusting for size. The intermediary’s exposure

to risky assets generates contagion. This force is the reverse side of insurance that it provides to

other countries by absorbing a part of their losses.

Figure A.11: Shock to ν in regular countries:
gains and losses on of the intermediary and lo-
cal savers on impact (percent of global GDP,
weighted by density)

Figure A.12: Shock to ν in special country: gains
and losses on of the intermediary and local savers
on impact (percent of global GDP, weighted by
density)

Table 20: Shock to ν in regular countries: gains
on impact (percent of global GDP). Low w
countries are those constrained in steady state,
θ(w) = θ

intermediary (safe asset) −15.71%

intermediary (risky assets, low w) −12.76%

intermediary (risky assets, high w) −0.90%

savers in low w countries −23.71%

savers in high w countries −4.37%

Table 21: Shock to ν in special country: gains
on impact (percent of global GDP). Low w
countries are those constrained in steady state,
θ(w) = θ

intermediary (safe asset) −5.33%

intermediary (risky assets, low w) −3.85%

intermediary (risky assets, high w) −0.27%

savers in low w countries −7.14%

savers in high w countries −1.30%

Table 22 collects the differences between the shocks to γ and ν. The shock to the global

intermediary’s risk-taking capacity is essential to generate large capital flows on impact, and these

flows only happen in deep markets with rich and unconstrained domestic investors. The shock to

output is essential to generate a fall in asset prices that is not confined to poor countries with a
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shallow investor base. The safe asset appreciates when the intermediary loses appetite for risk and

depreciates when the interest rate rises to accommodate a fall in production.

Table 22: Summarized qualitative facts about negative shocks to γ and ν

fall in γ(t) fall in ν(t) or ν̂(t)

interest rate - +

safe asset + -

risky assets, rich countries + -

risky assets, poor countries - -

retrenchment flows, rich countries + 0

retrenchment flows, poor countries 0 0
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L Details for linearization

In this section, I explain the linearization procedure. The notation convention is that a function

z(w) with only one argument corresponds to the steady state. Functions with tildes, like z̃(w, t),

correspond to the first-order deviations. I also denote the intermediary’s net worth ŵ(t) by n(t)

to avoid excessive use of hats.

Step 1: constraint is slack. Take values of w for which the constraint is slack in the steady

state. Start with the drift and volatility of the wealth:

µw(w, t) = (r(t)− ρ− λ)w + λ̂n(t) + µR(w, t)θ(w, t)w (A.232)

σw(w, t) =
√

σR(w, t)θ(w, t)w (A.233)

Using the optimal choice, θ(w, t) = µR(w, t)/σR(w, t), replace the returns in the drift:

µw(w, t) = (r(t)− ρ− λ)w + λ̂n(t) +
σw(w, t)

2

w
(A.234)

This leads to

µ̃w(w, t) = wr̃(t) + λ̂ñ(t) +
2σw(w)

w
σ̃w(w, t) (A.235)

Now using the definition
√
σR(w, t) = (σp(w, t) + σy)/p(w, t) and σp(w, t) = ∂wp(w, t)σw(w, t),

σw(w, t) =
σyθ(w, t)w

p(w, t)− θ(w, t)∂wp(w, t)w
(A.236)

Using market clearing µR(w, t)/σR(w, t) = p(w, t)/(φ(t)η(w)+w) and θ(w, t) = µR(w, t)/σR(w, t),

σw(w, t) =
σyw

φ(t)η(w) + w − ∂wp(w, t)w
(A.237)

Expanding,

σ̃w =
σw(w)

2

σyw
(w∂wp̃− η(w)φ̃(t)) (A.238)

The market-clearing condition is

µp(w, t) + ν − r(t)p(w, t) = (σp(w, t) + σy)
2 1

φ(t)η(w) + w
(A.239)
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Expanding,

µ̃p − r̃(t)p(w)− rp̃ = σ̃p
2(σp(w) + σy)

φ(t)η(w) + w
− φ̃(t)η(w)

(σp(w) + σy)
2

(φ(t)η(w) + w)2
(A.240)

Now using σw(w) = wθ(w)(σp(w) + σy)/p(w) = w(σp(w) + σy)/(φη(w) + w),

µ̃p − σ̃p
2σw(w)

w
− rp̃ = r̃(t)p(w)− φ̃(t)η(w)

σw(w)
2

w2
(A.241)

The expressions for µ̃p and σ̃p are

µ̃p = ∂tp̃+ µw(w)∂wp̃+ p′(w)µ̃w + σ̃wσw(w)p
′′(w) +

σw(w)
2

2
∂wwp̃ (A.242)

= ∂tp̃+
σw(w)

2

2
∂wwp̃+ µw∂wp̃+ p′(w)

(
wr̃(t) + λ̂ñ(t) +

2σw(w)

w
σ̃w

)
+ σ̃wσw(w)p

′′(w)

σ̃p = ∂wp̃σw(w) + p′(w)σ̃w (A.243)

Combining,

µ̃p − σ̃p
2σw(w)

w
= p′(w)(wr̃(t) + λ̂ñ(t)) + ∂tp̃+

σw(w)
2

2
∂wwp̃+

(
µw(w)−

2σw(w)
2

w

)
∂wp̃

+ σ̃wσw(w)p
′′(w)

= p′(w)(wr̃(t) + λ̂ñ(t))− φ̃(t)p′′(w)
σw(w)

3η(w)

σyw

+ ∂tp̃+
σw(w)

2

2
∂wwp̃+

(
µw(w)−

2σw(w)
2

w
+ p′′(w)

σw(w)
3

σy

)
∂wp̃ (A.244)

Plugging this into equation (A.241),

σw(w)
2

2
∂wwp̃+

(
µw(w)−

2σw(w)
2

w
+ p′′(w)

σw(w)
3

σy

)
∂wp̃− rp̃ = r̃(t)(p(w)− p′(w)w)− p′(w)λ̂ñ(t)

+

(
p′′(w)

σw(w)
3η(w)

σyw
− η(w)

σw(w)
2

w2

)
φ̃(t)− ∂tp̃ (A.245)

Step 2: the constraint binds. Take values of w for which the constraint binds in the steady

state. The drift and volatility of the wealth are

µw(w, t) = (r(t)− ρ− λ)w + λ̂n(t) + µR(w, t)θw (A.246)

σw(w, t) = θ
√

σR(w, t)w (A.247)
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Using market clearing µR(w, t)/σR(w, t) = (p(w, t)−θw)/(φ(t)η(w)) and the definition of σR(w, t),

µw(w, t) = (r(t)− ρ− λ)w + λ̂n(t) +
σw(w, t)

2

φ(t)η(w)

(
p(w, t)

θw
− 1

)
(A.248)

σw(w, t) =
θwσy

p(w, t)− θw∂wp(w, t)
(A.249)

Expanding,

µ̃w = r̃(t)w + λ̂ñ(t)− σw(w)
2

φ2η(w)

(
p(w, t)

θw
− 1

)
φ̃(t)

+
2σw(w)

φη(w)

(
p(w, t)

θw
− 1

)
σ̃w +

σw(w)
2

φθη(w)w
p̃ (A.250)

σ̃w =
σw(w)

2

σy

∂wp̃−
σw(w)

2

θwσy

p̃ (A.251)

The expressions for expanded drift and volatility of the price process are

µ̃p = ∂tp̃+ µw(w)∂wp̃+ p′(w)µ̃w + σ̃wσw(w)p
′′(w) +

σw(w)
2

2
∂wwp̃

= ∂tp̃+
σw(w)

2

2
∂wwp̃+ µw∂wp̃+ p′(w)

(
wr̃(t) + λ̂ñ(t)− σw(w)

2

φ2η(w)

(
p(w, t)

θw
− 1

)
φ̃(t)

)
+ p′(w)

(
2σw(w)

φη(w)

(
p(w, t)

θw
− 1

)
σ̃w +

σw(w)
2

φθη(w)w
p̃

)
+ p′′(w)σw(w)σ̃w (A.252)

σ̃p = σw(w)∂wp̃+ p′(w)σ̃w (A.253)

The market clearing condition is

µp(w, t) + y − r(t)p(w, t) = (σp(w, t) + σy)
2 1

φ(t)η(w)

(
1− θw

p(w, t)

)
(A.254)

Expanding,

µ̃p − p(w)r̃(t)− rp̃ = 2σ̃p
σp(w) + σy

φη(w)

(
1− θw

p(w)

)
− (σp(w) + σy)

2

φ2η(w)

(
1− θw

p(w)

)
φ̃(t)

+
(σp(w) + σy)

2

φη(w)

θw

p(w)2
p̃ (A.255)
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Now using σp(w) + σy = σw(w)p(w)/(θw),

µ̃p − p(w)r̃(t)− rp̃ = σ̃p
2σw(w)

φη(w)

(
p(w)

θw
− 1

)
− σw(w)

2p(w)

φ2θw(w)w

(
p(w)

θw
− 1

)
φ̃(t)

+
σw(w)

2

φθη(w)w
p̃ (A.256)

Now compute

µ̃p − σ̃p
2σw(w)

φη(w)

(
p(w)

θw
− 1

)
= ∂tp̃+

σw(w)
2

2
∂wwp̃+ µw∂wp̃

+ p′(w)

(
wr̃(t) + λ̂ñ(t)− σw(w)

2

φ2η(w)

(
p(w, t)

θw
− 1

)
φ̃(t)

)
− 2σw(w)

2

φη(w)

(
p(w)

θw
− 1

)
∂wp̃+ p′(w)

σw(w)
2

φθη(w)w
p̃+ p′′(w)σw(w)σ̃w

= ∂tp̃+
σw(w)

2

2
∂wwp̃

+

(
µw − 2σw(w)

2

φη(w)

(
p(w)

θw
− 1

)
+ p′′(w)

σw(w)
3

σy

)
∂wp̃

+ p′(w)

(
wr̃(t) + λ̂ñ(t)− σw(w)

2

φ2η(w)

(
p(w, t)

θw
− 1

)
φ̃(t)

)
+

(
p′(w)

σw(w)
2

φθη(w)w
− p′′(w)

σw(w)
3

θwσy

)
p̃ (A.257)

Plugging,

∂tp̃+ ∂wwp̃
σw(w)

2

2
+ ∂wp̃

(
µw(w) +

σw(w)
3

σy

p′′(w)− 2σw(w)
2

φη(w)

(
p(w)

θw
− 1

))
(A.258)

+ p̃

(
σw(w)

2(p′(w)− 1)

φθη(w)w
− σw(w)

3p′′(w)

θwσy

− r

)
= (p(w)− p′(w)w)r̃(t)− p′(w)λ̂ñ(t)− σw(w)

2

φ2η(w)

(
p(w)

θw
− 1

)(
p(w)

θw
− p′(w)

)
φ̃(t)

Finally, acknowledging that p(w)/(θw)− p′(w) = σy/σw(w),

∂tp̃+
σw(w)

2

2
∂wwp̃+

(
µw(w) + p′′(w)

σw(w)
3

σy

− 2σw(w)
2

φη(w)

(
p(w)

θw
− 1

))
∂wp̃

+ p̃

(
σw(w)

2(p′(w)− 1)

φθη(w)w
− σw(w)

3p′′(w)

θwσy

− r

)
(A.259)

= r̃(t)(p(w)− p′(w)w)− p′(w)λ̂ñ(t)− σw(w)σy

φ2η(w)

(
p(w)

θw
− 1

)
φ̃(t)
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Step 3: putting it together. Now rewrite the equations together. When the constraint is slack,

∂tp̃+
σw(w)

2

2
∂wwp̃+

(
µw(w) + p′′(w)

σw(w)
3

σy

− 2σw(w)
2

w

)
∂wp̃− rp̃ (A.260)

= r̃(t)(p(w)− p′(w)w)− p′(w)λ̂ñ(t) +

(
p′′(w)

σw(w)
3η(w)

σyw
− σw(w)

2η(w)

w2

)
φ̃(t)

When it binds:

∂tp̃+
σw(w)

2

2
∂wwp̃+

(
µw(w) + p′′(w)

σw(w)
3

σy

− 2σw(w)
2

φη(w)

(
p(w)

θw
− 1

))
∂wp̃

+ p̃

(
σw(w)

2(p′(w)− 1)

φθη(w)w
− σw(w)

3p′′(w)

θwσy

− r

)
(A.261)

= r̃(t)(p(w)− p′(w)w)− p′(w)λ̂ñ(t)− σw(w)σy

φ2η(w)

(
p(w)

θw
− 1

)
φ̃(t)

At the boundary w,

lim
w→w+0

1

φη(w)

(
p(w)

θ
− w

)
= 1 (A.262)

The coefficient on ∂wp̃ is continuous. Subtracting the w+ and w− limits of A.260 and A.261,

σw(w)
2

2
(∂wwp̃(w+)− ∂wwp̃(w−)) =

[
p′′(w)

σw(w)
3η(w)

σyw
− σw(w)

2η(w)

w2 +
σw(w)σy

φ2η(w)

(
p(w)

θw
− 1

)]
φ̃(t)

+

[
σw(w)

2(p′(w)− 1)

φθη(w)w
− σw(w)

3p′′(w)

θwσy

]
p̃ (A.263)

Now using the fact that p′(w) = p(w)/(θw)− σy/σw(w), rewrite the coefficient on p̃:

σw(w)
2(p′(w)− 1)

φθη(w)w
− σw(w)

3p′′(w)

θwσy

=
σw(w)

2

θwφη(w)

(
p(w)

θw
− 1

)
− σw(w)σy

θwφη(w)
− σw(w)

3p′′(w)

θwσy

=
σw(w)

2

θw
− σw(w)σy

θwφη(w)
− σw(w)

3p′′(w)

θwσy

≡ −1

θ
C (A.264)

Rewriting the coefficient on φ̃(t),

η(w)

[
p′′(w)σw(w)

3

σyw
− σw(w)

2

w2 +
σw(w)σy

φ2η(w)2

(
p(w)

θw
− 1

)]
= η(w)

[
p′′(w)σw(w)

3

σyw
− σw(w)

2

w2 +
σw(w)σy

φη(w)

]
= η(w)C (A.265)
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Plugging this into the boundary condition equation (A.263),

σw(w)
2

2
(∂wwp̃(w+) − ∂wwp̃(w−)

=

(
η(w)φ̃(t)− p̃(w)

θ

)[
p′′(w)σw(w)

3

σyw
− σw(w)

2

w2 +
σw(w)σy

φη(w)

]
(A.266)

Step 4: distribution. Consider the KFE for g(w, t):

∂tg(w, t) = −∂w(µw(w, t)g(w, t)) +
1

2
∂ww(σw(w, t)

2g(w, t)) (A.267)

Expanding,

∂tg̃ = −∂w(µw(w)g̃) +
1

2
∂ww(σw(w)

2g̃)− ∂w(µ̃w(w)g(w)) + ∂ww(σ̃wσw(w)g(w)) (A.268)

Having computed p̃, one can plug µ̃w and σ̃w. When the constraint is slack,

σ̃w =
σw(w)

2

σy

∂wp̃−
σw(w)

2η(w)

σyw
φ̃(t) (A.269)

µ̃w =
2σw(w)

3

σyw
∂wp̃−

2σw(w)
3η(w)

σyw2
φ̃(t) + wr̃(t) + λ̂ñ(t) (A.270)

When it binds,

σ̃w =
σw(w)

2

σy

∂wp̃−
σw(w)

2

θwσy

p̃ (A.271)

µ̃w =
2σw(w)

3

σyφη(w)

(
p(w, t)

θw
− 1

)
∂̃wp̃−

σw(w)
2

φ2η(w)

(
p(w, t)

θw
− 1

)
φ̃(t) + wr̃(t) + λ̂ñ(t)

+
σw(w)

2

φθη(w)w

[
1− 2σw(w)

σy

(
p(w, t)

θw
− 1

)]
p̃ (A.272)

Aggregate regular country and intermediary wealth deviations are

w̃(t) =

∫
g̃wdw (A.273)

ñ(t) = −ρ

ρ̂
w̃(t) (A.274)

The US tree price satisfies

p̂(t)q = n(t) + w(t)−
∫

p(w, t)g(w, t)dt (A.275)
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Expanding,

˜̂pq = ñ(t)

(
1− ρ

ρ̂

)
−
∫

p̃g(w)dw −
∫

g̃p(w)dw (A.276)

The deviations in the interest rate and the global factor satisfy

r̃(t) =
∂t ˜̂p

p̂
− r ˜̂p

p̂
(A.277)

φ̃(t) = γñ(t) + nγ̃(t) (A.278)

These close the linearized model.

Step 5: numerical procedure. The discrete approximation of the PDE for p̃ can be written as(
Ap −

1

dt

)
p(t) = Jrhs,r r(t) + Jrhs,n n(t) + Jrhs,φφ(t)−

1

dt
p(t+ 1) (A.279)

Denoting M1 = (Ap − 1/dt)−1, M2 = 1/dt, and M3 = −M1M2,

p(t) = M1Jrhs,r r(t) +M1Jrhs,n n(t) +M1Jrhs,φφ(t) +M3 p(t+ 1)

=
T−t∑
s=0

(M3)
sM1Jrhs,r r(t+ s) +

T−t∑
s=0

(M3)
sM1Jrhs,n n(t+ s) +

T−t∑
s=0

(M3)
sM1Jrhs,φ φ(t+ s)

=
T−t∑
s=0

Jp,r(s) r(t+ s) +
T−t∑
s=0

Jp,n(s)n(t+ s) +
T−t∑
s=0

Jp,φ(s)φ(t+ s) (A.280)

Here M1, M2, and M3 have to be corrected to incorporate the boundary condition at w.

The discrete approximation of the KFE for g̃ is(
Ag +

1

dt

)
g(t+ 1) = −A1µw(t) + A2 σw(t) +

1

dt
g(t) (A.281)

Here the matrix A1 discretizes the operator ∂w · g(w)· , and A2 discretizes ∂ww · σw(w) · g(w)· .
Denoting M4 = (Ag + 1/dt)−1, M5 = −M4A1, M6 = M4A2, and Mg = M4M2,

g(t+ 1) = M5µw(t) +M6 σw(t) +Mg g(t)

=
t−1∑
s=0

(Mg)
sM5µw(t− s) +

t−1∑
s=0

(Mg)
sM6 σw(t− s) + (Mg)

t−1 g(0)

=
t−1∑
s=0

Jg,µ(s)µw(t− s) +
t−1∑
s=0

Jg,σ(s)σw(t− s) + (Mg)
t−1 g(0) (A.282)
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The drift deviations can be written as

µw(t) = Jµ,p p(t) + Jdirect
µ,r r(t) + Jdirect

µ,n n(t) + Jdirect
µ,φ φ(t) =

(
T−t∑
s=0

Jp,r(s) + Jdirect
µ,r δs,0

)
r(t+ s)

+

(
T−t∑
s=0

Jp,n(s) + Jdirect
µ,n δs,0

)
n(t+ s) +

(
T−t∑
s=0

Jp,φ(s) + Jdirect
µ,φ δs,0

)
φ(t+ s)

=
T−t∑
s=0

Jµ,r(s) r(t+ s) +
T−t∑
s=0

Jµ,n(s)n(t+ s) +
T−t∑
s=0

Jµ,φ(s)φ(t+ s) (A.283)

The volatility deviations are

σw(t) = Jσ,p p(t) + Jdirect
σ,r r(t) + Jdirect

σ,n n(t) + Jdirect
σ,φ φ(t) =

(
T−t∑
s=0

Jp,r(s) + Jdirect
σ,r δs,0

)
r(t+ s)

+

(
T−t∑
s=0

Jp,n(s) + Jdirect
σ,n δs,0

)
n(t+ s) +

(
T−t∑
s=0

Jp,φ(s) + Jdirect
σ,φ δs,0

)
φ(t+ s)

=
T−t∑
s=0

Jσ,r(s) r(t+ s) +
T−t∑
s=0

Jσ,n(s)n(t+ s) +
T−t∑
s=0

Jσ,φ(s)φ(t+ s) (A.284)

Plugging,

g(t+ 1) =
t−1∑
s=0

Jg,µ(s)
T−t+s∑
u=0

Jµ,r(u) r(t− s+ u) +
t−1∑
s=0

Jg,µ(s)
T−t+s∑
u=0

Jµ,n(u)n(t− s+ u) (A.285)

+
t−1∑
s=0

Jg,µ(s)
T−t+s∑
u=0

Jµ,φ(u)φ(t− s+ u) +
t−1∑
s=0

Jg,σ(s)
T−t+s∑
u=0

Jσ,r(u) r(t− s+ u)

+
t−1∑
s=0

Jg,σ(s)
T−t+s∑
u=0

Jσ,n(u)n(t− s+ u) +
t−1∑
s=0

Jg,σ(s)
T−t+s∑
u=0

Jσ,φ(u)φ(t− s+ u)

+ (Mg)
t−1 g(0)

Changing the order of summation,

g(t+ 1) =
t−1∑
u=0

Jg,µ(u)Jµ,r(u+ s− t) r(s) +
t−1∑
u=0

Jg,µ(u)Jµ,n(u+ s− t)n(s) (A.286)

+
t−1∑
u=0

Jg,µ(u)Jµ,φ(u+ s− t)φ(s) +
t−1∑
u=0

Jg,σ(u)Jσ,r(u+ s− t) r(s)

+
t−1∑
u=0

Jg,σ(u)Jσ,n(u+ s− t)n(s) +
t−1∑
u=0

Jg,σ(u)Jσ,φ(u+ s− t)φ(s) + (Mg)
t−1 g(0)

59



Initial revaluation g(0) comes from the jump in prices: g(0) = Areval p(0), so g(t+ 1) is

g(t+ 1) =
T∑

s=1

Jaccum
g,µ,r (t, s) r(s) +

T∑
s=1

Jaccum
g,µ,n (t, s)n(s) +

T∑
s=1

Jaccum
g,µ,φ (t, s)φ(s)

+
T∑

s=1

Jaccum
g,σ,r (t, s) r(s) +

T∑
s=1

Jaccum
g,σ,n (t, s)n(s) +

T∑
s=1

Jaccum
g,σ,φ (t, s)φ(s)

+
T∑

s=1

Jreval
g,r (t, s) r(s) +

T∑
s=1

Jreval
g,n (t, s)n(s) +

T∑
s=1

Jreval
g,φ (t, s)φ(s) (A.287)

Here the accumulation Jacobians are

Jaccum
g,µ,r (t, s) =

t−1∑
u=0

Jg,µ(u)Jµ,r(u+ s− t) = Jaccum
g,µ,r (t+ 1, s+ 1)− Jg,µ(t)Jµ,r(s) (A.288)

Jaccum
g,µ,n (t, s) =

t−1∑
u=0

Jg,µ(u)Jµ,n(u+ s− t) = Jaccum
g,µ,n (t+ 1, s+ 1)− Jg,µ(t)Jµ,n(s) (A.289)

Jaccum
g,µ,φ (t, s) =

t−1∑
u=0

Jg,µ(u)Jµ,φ(u+ s− t) = Jaccum
g,µ,φ (t+ 1, s+ 1)− Jg,µ(t)Jµ,φ(s) (A.290)

Jaccum
g,σ,r (t, s) =

t−1∑
u=0

Jg,σ(u)Jσ,r(u+ s− t) = Jaccum
g,σ,r (t+ 1, s+ 1)− Jg,σ(t)Jσ,r(s) (A.291)

Jaccum
g,σ,n (t, s) =

t−1∑
u=0

Jg,σ(u)Jσ,n(u+ s− t) = Jaccum
g,σ,n (t+ 1, s+ 1)− Jg,σ(t)Jσ,n(s) (A.292)

Jaccum
g,σ,φ (t, s) =

t−1∑
u=0

Jg,σ(u)Jσ,φ(u+ s− t) = Jaccum
g,σ,φ (t+ 1, s+ 1)− Jg,σ(t)Jσ,φ(s) (A.293)

The revaluation Jacobians are

Jreval
g,r (t, s) = (Mg)

t−1ArevalJp,r(s) (A.294)

Jreval
g,n (t, s) = (Mg)

t−1ArevalJp,n(s) (A.295)

Jreval
g,φ (t, s) = (Mg)

t−1ArevalJp,φ(s) (A.296)

The accumulation Jacobians can be computed recursively. This recursive procedure is the ana-

log of the fake-news algorithm. The initial conditions are Jaccum
g,µ,r (t, 1) = Jg,µ(t − 1)Jµ,r(0) and

Jaccum
g,µ,r (1, s) = Jg,µ(0)Jµ,r(s − 1) for r and analogously for n and φ. The initial conditions for σ

parts of the Jacobian are identical.

With these Jacobians at hand, it is possible to compute the Jacobian of any moment of the
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distribution and any function of w. Specifically, aggregate wealth of the regular countries is

w(t) =
T∑

s=1

W ′J total
g,r (s, t) r(s) +

T∑
s=1

W ′J total
g,n (s, t)n(s) +

T∑
s=1

W ′J total
g,φ (s, t)φ(s) (A.297)

The deviation of the US tree price is

p̂(t) = w(t)
1

q

(
1− ρ̂

ρ

)
− 1

q
P ′ g(t)− 1

q
G′ p(t)

=
1

q

T∑
s=1

[((
1− ρ̂

ρ

)
W ′ − P ′

)
J total
g,r (s, t)−G′Jp,r(s− t)

]
r(s)

+
1

q

T∑
s=1

[((
1− ρ̂

ρ

)
W ′ − P ′

)
J total
g,n (s, t)−G′Jp,n(s− t)

]
n(s)

+
1

q

T∑
s=1

[((
1− ρ̂

ρ

)
W ′ − P ′

)
J total
g,φ (s, t)−G′Jp,φ(s− t)

]
φ(s) (A.298)

Here G is the vectorized steady-state density, P is the vectorized steady-state price, and W is the

wealth grid. The convention is that Jp,r(t− s) = 0 whenever s > t, and the same for n and φ.

Shocks to output. All equations are very similar when there are shocks to output ν̃(t) and
˜̂ν(t) instead of risk-taking capacity γ̃(t). Indeed, γ̃(t) only appears explicitly at the very end in

φ̃(t) = γñ(t) + nγ̃(t). In case of output shocks, deviations φ̃(t) and ñ(t) still enter all equations

separately but the relationship is simpler, φ̃(t) = γñ(t).

One substantial difference is that ν̃(t) directly enters the Kolmogorov backward equation for

risky asset prices, while ˜̂ν(t) enters the pricing equation for the safe asset. It is straightforward to

add these deviations to all equations.
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