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Abstract

I describe a value-at-risk constraint that induces long-lived investors to choose static mean-
variance portfolios with time-varying risk tolerance. This allows incorporating risk aversion
shocks into dynamic models while keeping portfolios easy to aggregate across heterogeneous
investors. In equilibrium, asset prices follow standard risk-neutral pricing equations with one
additional term that depends on the wealth distribution through a single scalar. I provide a
foundation for the value-at-risk constraint through a version of robustness concerns, where
investors fear model misspecification and try to account for adverse alternative scenarios.
I then illustrate the practicality of value-at-risk in a sovereign debt model with a cross-
section of countries. Aggregate shocks to lenders’ constraints create endogenous pricing risk,
global interest rate risk, and a volatile common component in spreads that is orthogonal
to fundamentals. I show that, despite this rich upside, solving for global equilibria with
value-at-risk constraints requires minimal departures from models with risk-neutral lenders.
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1 Introduction

I describe a tractable version of the value-at-risk portfolio constraint for macroeconomic models.

Investors with log utility trade a risk-free bond with instant maturity and a portfolio of risky assets

with Brownian returns. The value-at-risk constraint caps the variance of returns by a multiple

of expected excess returns. The multiple is exogenous and potentially stochastic. I show that

investors consume a constant fraction of their wealth and choose mean-variance portfolios of risky

assets with the multiplier acting as the effective risk-tolerance coefficient.

This formulation of investors’ problem combines myopic portfolios and time-varying effective

risk tolerance with meaningful consumption choice, which makes intertemporal substitution a force

in the model and allows for long-lived agents. Log utility alone allows for meaningful consumption

choice and myopic portfolios but fixes effective risk tolerance at one. Departing from unit risk

tolerance requires power utility or recursive preferences, which creates additional hedging terms in

portfolios. These terms depend on investors’ marginal value of wealth, an endogenous state variable

that solves a potentially complicated differential equation. Habits, another way to generate time-

varying risk aversion, similarly generate additional state variables. Value-at-risk constraints help

avoid these complications.

I provide a foundation for the value-at-risk constraint through a version of robustness concerns.

Investors are concerned about model misspecification and entertain alternative probability mea-

sures for returns. They first pick an adverse alternative model subject to a penalty for deviating

too much from a reference measure and then choose consumption and portfolio weights. This is a

version of maxmin decision rules of Gilboa and Schmeidler (1989) operationalized by Hansen and

Sargent (2001), Anderson, Hansen, and Sargent (2003), and Hansen and Sargent (2008).

My main result is that an investor with log utility and robustness concerns behaves exactly like

a value-at-risk-constrained investor. I relate the value-at-risk multiplier to the penalty parameter

in the robust problem. Importantly, I deviate from the traditional way of modeling robustness

concerns by allowing agents to misspecify their models of returns but not aggregate quantities.

They ignore the implications of model misspecification for the dynamics of state variables in their

problems, which is what usually creates hedging terms under robustness concerns. This allows

me to break away from the equivalence between robust choice and Kreps and Porteus (1978) and

Duffie and Epstein (1992) preferences and obtain myopic portfolios.

I then show how consumption and portfolio choice under value-at-risk aggregate in equilibrium.

Risky asset prices and the risk-free rate depend on the wealth distribution through one scalar: the

average value-at-risk multiplier weighted with wealth shares. Each investor’s leverage is the ratio

of her value-at-risk multiplier to the same weighted average, which can be interpreted as aggregate

effective risk tolerance. Myopic portfolios ensure that it only depends on the allocation of wealth
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between agents with different attitudes to risk. In turn, wealth shares of all investors load on the

shocks in the same proportions. The sign and the total scale of the loadings depend exclusively on

their leverage. Wealth shares of levered investors, who borrow risk-free to invest in risky assets,

increase in total wealth and drift up due to the risk premia they collect. It is exactly the opposite

for investors with tighter value-at-risk constraints, who lend risk-free in equilibrium.

In a special case when heterogeneous value-at-risk multipliers are fixed over time, I show that

aggregate risk tolerance also loads positively on total wealth and drifts up with the speed pro-

portional to the dispersion of the value-at-risk multipliers. I illustrate this in a special example

inspired by Caballero and Simsek (2020): a Lucas tree, a risk-free bond, and two investors with

different value-at-risk multipliers. The less constrained investor’s wealth share is the only state

variable. There are closed-form solutions for the risk premium, the interest rate, and the evolution

of the wealth share itself. The less constrained investor borrows from the other one to lever up

and invest in the Lucas tree. Negative output shocks decrease her wealth share, which raises the

equilibrium risk premium and lowers the interest rate. Using value-at-risk constraints makes this

mechanism extremely simple to expose.

I then shift the focus from heterogeneity in the value-at-risk multipliers to time variation.

For illustration, I apply value-at-risk constraints to pricing sovereign bonds. The representative

investor has a stochastic value-at-risk multiplier. She lends to a cross-section of sovereigns with

idiosyncratic shocks to productivity, interpreted as fiscal surpluses. With major simplifications on

the borrowers’ side, I arrive at bond prices as a function of two exogenous states: the country’s

productivity and the lender’s value-at-risk multiplier. I show that prices follow the usual risk-

neutral pricing equation in the tradition of Leland (1994) with one additional term representing

the risk correction. The stochastic global risk-free rate is a function of the value-at-risk multiplier

only. The equilibrium spreads as well as the risk-free rate are easily computed given prices.

The practicality of value-at-risk is that it combines simple portfolio choice, which leads to

tractable pricing equations in a small state space, with long-lived investors and a meaningful

consumption-savings trade-off, which makes it easy to endogenize the risk-free rate. The time-

varying value-at-risk multiplier adds interest rate and pricing risk to default risk, so it dynamically

changes both the quantity and price components of the risk premium with no technical complica-

tions. This offers a direct, if somewhat mechanical, way to approach the conflict between high and

volatile spreads and low historical incidence of default in the data, as stated by Aguiar, Chatterjee,

Cole, and Stangebye (2016).

There is a long literature in mathematical finance studying value-at-risk constraints and a

relatively new literature in financial economics applying them to equilibrium analysis. Examples

include Danielsson, Shin, and Zigrand (2012), Adrian and Shin (2014), Adrian and Boyarchenko

(2018), Hofmann, Shim, and Shin (2022), Coimbra (2020), and Coimbra and Rey (2024). Models
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in these papers use two different types of constraints, which I review in Section 6. A much

larger set of papers uses mean-variance preferences and justifies them by alluding to value-at-risk.

I contribute to this literature by suggesting another particularly convenient formulation of the

constraint, formalizing the mean-variance portfolios, analyzing their aggregation properties, and

providing a foundation through robust choice.

The connection between value-at-risk and robust choice can be helpful because it offers an

interpretation of shocks to prices of risk that does not depend on regulation. Barbiero, Bräuning,

Joaquim, and Stein (2024) and Bräuning and Stein (2024) show that regulatory limits of this type

do indeed affect asset prices. Coimbra, Kim, and Rey (2022) document substantial cross-sectional

heterogeneity in risk limits, which means that reallocation of activity between financial intermedi-

aries should affect aggregate risk premia because of uneven exposure to regulation. However, these

effects are not necessarily strong enough to explain the large global variation in prices of risk, and

changes in parameters regulating attitudes to risk offer a complementary mechanism.

I formulate the value-at-risk constraint in Section 2, present the foundation in Section 3, de-

scribe aggregation in Section 4, and provide a sovereign debt example in Section 5. Section 6

reviews the literature using the value-at-risk constraints.

2 Value-at-risk constraint

Time is continuous and runs forever. The exogenous state of the economy is a d-dimensional vector

xt that evolves as

dxt = µX(xt)dt+ σX(xt)dZt

Here {Zt}t≥0 is a standard b-dimensional Brownian process, so σX(xt) is a (d × b)-dimensional

matrix, and µX(xt) is a vector of length d. The investor has access to a riskless asset that pays

an instantaneous return r(xt)dt and a collection of k risky assets with a vector of instantaneous

excess returns dRt given by

dRt = µR(xt)dt+ σR(xt)dZt

Here σR(xt) is a (k × b)-dimensional matrix and µR(xt) is a vector of length k. Returns and

exogenous states do not necessarily load on all shocks, so some columns of σR(xt) and σX(xt) may

be zero. In what follows, I only require σR(xt)σR(xt)
′ to have full rank for all xt.

Investor’s wealth wt evolves as

dwt = (r(xt)wt − ct)dt+ wtθ
′
tdRt
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Here ct is consumption and θt is a k-dimensional vector of portfolio weights on risky assets, both

chosen at time t. The pair (ct, θt) are the only control variables.

The problem of the investor is to keep wt ≥ 0 and to solve

max
{ct,θt}t≥0

E
[
ρ

∫ ∞

0

e−ρt log(ct)dt

]
(1)

s.t. Vt[θ
′
tdRt] ≤ γt · Et[θ

′
tdRt] for all t ≥ 0 (2)

The value-at-risk constraint equation (2) is the key feature. It is imposed continuously on incre-

mental returns and caps the variance of returns by a multiple of expected profits. Both variance

and expectation are of order dt, so dt cancels out. The multiplier γt < 1 is one of the components of

xt. It is exogenous and stochastic, potentially driving returns and other macroeconomic outcomes.

Investor’s wealth wt potentially impacts returns and prices in this economy too, although I

do not allow her to internalize the price impact of her actions and wealth dynamics. To formally

capture this, I let one of the components of xt be a fictitious process ŵt that coincides with wt

on all sample paths. The investor still treats it as exogenous, not realizing how her actions that

change the evolution of wt also change that of ŵt.

Proposition 1. Investor’s consumption and portfolio choice are

ct(wt, xt) = ρwt

θt(wt, xt) = γt[σR(xt)σR(xt)
′]−1µR(xt)

Investor’s value function is separable over wealth and exogenous states: V (wt, xt) = log(wt)+η(xt),

where η(·) solves a second-order partial differential equation.

Proof. Take the recursive form of equation (1). Let V (w, x) be the value of an agent with wealth

w given the aggregate state x. The HJB equation is

ρV (w, x) = max
c,θ

ρ log(c) + (r(x)w − c+ wθ′µR(x))Vw(w, x) +
θ′σR(x)σR(x)

′θ

2
w2Vww(w, x)

+ µX(x)
′Vx′(w, x) +

1

2
tr[σX(x)

′Vxx′(w, x)σX(x)] + wθ′σR(x)σX(x)
′Vwx′(w, x) (3)

s.t. θ′σR(x)σR(x)
′θ ≤ γθ′µR(x) (4)

Guess and verify the solution to equation (3) to be V (w, x) = log(w) + η(x). The first implication

of this conjecture is that Vwx′(w, x) = 0. Second, Vx(w, x) and Vxx′(w, x) are functions of x only:

Vx(w, x) = ηx(x) and Vxx′(w, x) = ηxx′(x). Finally, consumption is a constant fraction of wealth:

c = ρw.

Next, consider portfolio choice. Let ξ(x,w) be the multiplier on equation (4). Taking the
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first-order condition with respect to θ,

θ =
1 + γξ(w, x)

1 + 2ξ(w, x)
[σR(x)σR(x)

′]−1µR(x)

If the constraint were slack, then ξ(w, x) = 0 and θ would be the regular mean-variance portfolio

typical for log investors, θ = [σR(x)σR(x)
′]−1µR(x). But by equation (4), this contradicts γ < 1.

Hence, ξ(w, x) > 0. Plugging θ into equation (4) yields

γ =
1 + γξ(w, x)

1 + 2ξ(w, x)

θ = γ[σR(x)σR(x)
′]−1µR(x) (5)

The rest of investor’s value function η(x), which only matters for welfare accounting, solves

ρη(x) = ρ log(ρ) + r(x)− ρ+
2γ − γ2

2
µR(x)

′[σR(x)σR(x)
′]−1µR(x)

+ µX(x)
′ηx′(x) +

1

2
tr[σX(x)

′ηxx′(x)σX(x)]

with appropriate boundary conditions. □

The resulting portfolio is identical to one that a myopic mean-variance investor with risk

aversion 1/γt would choose, so γt can be treated as time-varying effective risk tolerance. However,

the investor is also forward-looking and solves a consumption-savings problem too, which is crucial

for the determination of asset prices and the interest rate r(xt) in general equilibrium. The fact

that consumption is a constant fraction of wealth allows for simple linear aggregation, as is always

the case with a unit elasticity of intertemporal substitution. The value-at-risk constraint adds to

that a simple portfolio choice with a possibility to vary attitudes to risk over time.

The key assumption is that the terms in dwt that the agent cannot choose are linear in wt. In

the basic formulation of the problem above, this applies to interest income r(xt)wt. In a richer

setup with, for example, taxes or labor income, these additional terms would have to be linear in

wt for the value function to be separable over wt and other states. This property is standard, and

the value-at-risk constraint in the form of equation (2) does not add new restrictions.

Heuristic explanation for value-at-risk. Why is equation (2) a value-at-risk constraint if it

looks like a constraint on variance? A generic value-at-risk constraint caps the probability of a

given level of losses at a certain level. For example, given constants L and α, the constraint is

P
{
θ′tdRt ≤ −

√
Ldt
}
≤ α (6)
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Choosing Ldt instead of
√
Ldt in this expression would not work. Heuristically, the variance of

Brownian shocks is proportional to dt, so the standard deviation of θ′tdRt is of order
√
dt. Hence,

as t −→ 0, the probability on the left of equation (6) would just converge to 0 or 1 depending on

how E[θ′tdRt] = θ′tµR(xt)dt compares to Ldt. With
√
Ldt instead, equation (6) becomes

Φ

(
−

√
Ldt+ θ′tµR(xt)dt√
θ′tσR(xt)σR(xt)

′θtdt

)
≤ α

Here Φ(·) is the cumulative distribution function of the standard normal distribution. As dt −→ 0,

the O(dt) term in the numerator vanishes. For all α < 1/2, the limit of this inequality becomes

θ′tσR(xt)σR(xt)
′θt ≤

L

(Φ−1(α))2

One candidate for the benchmark level of losses L is some multiple of expected profits per unit of

time, L = γ̂tθ
′
tµR(xt). With γt = γ̂t/(Φ

−1(α))2, the constraint takes its final form:

θ′tσR(xt)σR(xt)
′θt ≤ γtθ

′
tµR(xt)

The last step is realizing that V[θ′tdRt] = θ′tσR(xt)σR(xt)
′θtdt and E[θ′tdRt] = θ′tµR(xt)dt.

Relation to recursive preferences. Another way to achieve lower risk tolerance than with log

utility is using recursive preferences of Duffie and Epstein (1992). Given a process for consumption

{ct}t≥0, define the investor’s value process {Vt}t≥0 as

Vt = E
[∫ ∞

t

φ(cs, Vs)ds

]
The problem is to maximize Vt over {cs, θs}s≥t, while keeping ws ≥ 0 for all s ≥ t. The recursive

representation of this problem is

0 = max
c,θ

φ(c, V (w, x)) + (r(x)w − c+ wθ′µR(x))Vw(w, x) +
θ′σR(x)σR(x)

′θ

2
w2Vww(w, x)

+ µX(x)
′Vx′(w, x) +

1

2
tr[σX(x)

′Vxx′(w, x)σX(x)] + wθ′σR(x)σX(x)
′Vwx′(w, x) (7)

I choose a form of φ(·) that keeps the elasticity of intertemporal substitution equal to one while

allowing for a lower risk tolerance coefficient:

φ(c, V ) = ρ(1− 1/γ)V

[
log(c)− log((1− 1/γ)V )

1− 1/γ

]
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The solution to equation (7) can be guessed and verified too. Conjecture that

V (w, x) =
(wη(x))1−1/γ

1− 1/γ

This implies c = ρw and φ(c, V ) = ρ(wη(x))1−1/γ[log(ρ) − log(η(x))]. Hence, w1−1/γ cancels out

from equation (7), and the conjecture that V (·) is multiplicatively separable over w and other

states proves correct. The optimal portfolio is

θ = γ[σR(x)σR(x)
′]−1µR(x) +

γ − 1

η(x)
[σR(x)σR(x)

′]−1σR(x)σX(x)
′ηx′(x)︸ ︷︷ ︸

hedging motive

(8)

The optimal portfolio consists of the mean-variance part γ[σR(x)σR(x)
′]−1µR(x), sometimes called

the myopic portfolio, and the hedging part. Computing the latter requires knowing the marginal

value of wealth η(x), which solves a second-order partial differential equation. The presence of

this term increases computational complexity and reduces tractability. The only case without the

hedging motive is γ = 1, but fixing γ makes it impossible to use fluctuations in preferences for

risk as a driver of dynamics. Eliminating the hedging motive while preserving dynamics of γ is

the main advantage of using the value-at-risk constraint.

Incorporating external income. Assuming that investors only have asset income and con-

sumption expenditures is restrictive. The simple form of consumption and portfolio choice in

Proposition 1 extends to some cases when a part of income is not chosen by the agent. Specifically,

dwt = (r(xt)wt − ct)dt+ wtθ
′
tdRt − wtς(xt)dt− wtτ(xt)

′dZt

Here wtς(xt)dt and wtτ(xt)
′dZt are new terms that the agent does not choose. They can represent

taxes, with ς(xt) being a locally deterministic tax and τ(xt) being a vector of taxes that load on

the exogenous shocks. These taxes can be useful for inducing stationarity in the model through

wealth redistribution: they can prevent the least constrained agent from taking over the entire

economy. Taxes are lump-sum in the sense that the agent does not directly choose the tax base,

which would be the case, for instance, with proportional taxes on portfolio returns. They still scale

with wealth, however, and this feature is key to preserving consumption and portfolio choice.

The locally deterministic tax ς(xt) clearly does not change anything in the agent’s decision

problem as it is simply isomorphic to a change in the interest rate. The stochastic tax in general

affects portfolio choice. For a clearer characterization, I focus on a special case

τ(xt) = ζ(xt)γt · σR(xt)′[σR(xt)σR(xt)′]−1µR(xt) (9)
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If taxes are set up this way, they generate the same exposure to shocks as the optimal portfolio:

τ(xt)
′dZt = ζ(xt)θ(wt, xt)

′σR(xt)dZt ≡ ζ(xt)θ(wt, xt)
′(dRt − µR(xt)dt)

Here θ(wt, xt) is the optimal vector of portfolio weights in the baseline model. This allows a

potential government to effectively tax away a share ζ(xt) of stochastic returns without imposing

proportional taxes. I next show the effect of imposing this taxes on the agent.

Proposition 2. Suppose the stochastic tax rate is given by equation (9) and there is a locally

deterministic tax ς(xt). Then, consumption choice is c(wt, xt) = ρwt. The optimal portfolio is

θ(wt, xt) = min{γt, 1 + ζ(xt)γt} · [σR(xt)σR(xt)′]−1µR(xt)

The value-at-risk constraint is slack if ζ(xt) < 1− 1/γt and binds otherwise.

I relegate the proof to Appendix A. Portfolio choice does not change unless the rate ζ(xt) is

very negative. The intuition is that taxing away a part of random returns decreases the agent’s

overall exposure to shocks, making her more willing to take risk. But the value-at-risk constraint is

binding already without the taxes, so it continues to bind when ζ(xt) is positive and even becomes

tighter as measured by the size of the multiplier. A negative ζ(xt), on the contrary, increases the

agent’s exposure to shocks and makes the constraint less tight. If ζ(xt) falls below 1 − 1/γt, the

constraint stops binding, and the tax rate shows up in portfolio choice directly.

3 A foundation through robust choice

I now provide a microfoundation for the value-at-risk constraint in a setup with robustness pref-

erences. I mostly follow Hansen, Khorrami, and Tourre (2024). Importantly, I slightly modify the

traditional setup to simplify portfolio choice and eliminate hedging motives. The agent is allowed

to consider misspecified processes for returns and choose potential worst-case scenarios. She is not

allowed to misspecify the process for other states. This prevents her from imagining a non-zero

correlation between the marginal value of wealth and returns in the future when she considers

worst-case scenarios, and the hedging motive does not enter portfolio choice. As a result, a robust

agent in my setup does not behave exactly like an agent with Kreps and Porteus (1978) or Duffie

and Epstein (1992) preferences, unlike in most existing models.

Consider an investor who does not face a value-at-risk constraint but instead entertains alterna-

tive models of the underlying shock. Specifically, she thinks that the true b-dimensional Brownian

process underlying the dynamics might be {Bt}t≥0, and increments of {Zt}t≥0 differ from those of

{Bt}t≥0 by a time-varying drift: dZt = dBt − htdt. The b-dimensional model correction process
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{ht}t≥0 investor’s choice. She assumes the following dynamics for returns:

dRt = µR(xt)dt+ σR(xt)dZt ≡ (µR(xt)− σR(xt)ht)dt+ σR(xt)dBt

This means she entertains alternative models for shocks driving returns and wishes to choose

portfolios that are robust to potential model corrections ht. These corrections make her assessment

of excess returns pessimistic.

The investor assumes the following dynamics for exogenous states:

dxt = µX(xt)dt+ σX(xt)dBt

Crucial here is that the underlying shocks are dBt instead of dZt as in Section 2. Hence, under

alternative models that make {Bt}t≥0 the true Brownian motion instead of {Zt}t≥0, there is no drift

correction ht to the dynamics of aggregate states. When the investor considers alternative models

for shocks to returns, she automatically assumes that she was always right about the dynamics of

aggregate states. This is the key difference compared to the standard setup in Hansen and Sargent

(2001) and Hansen, Khorrami, and Tourre (2024).

Formally, let the original process Z = {Zt}t≥0 be a standard b-dimensional Brownian motion on

the basis (Ω,F , {Ft}t≥0,P). Let {ht}t≥0 be a process adapted to {Ft}t≥0. By Girsanov’s theorem,

under a condition on {ht}t≥0, the process B = {Bt}t≥0 given by B0 = Z0 and dBt = dZt−htdt is a

standard b-dimensional Brownian motion on another statistical basis (Ω,F , {Ft}t≥0,Q). Here the

measure Q satisfies EQ[φt] = EP[Mtφt] for all t ≥ 0 and for all bounded processes {φt}t≥0 adapted

to {F}t≥0. The process {Mt}t≥0 is adapted to {Ft}t≥0 and given byM0 = 1 and dMt = −htMtdZt.

This re-weighting process is a likelihood ratio, and its logarithm mt = log(Mt) evolves as

dmt = −|ht|2

2
dt− h′tdZt =

|ht|2

2
dt− h′tdBt

I use this log-likelihood ratio to impose discipline on the investor’s choices, limiting how far she can

go in accounting for potential losses. One restriction that using log-likelihood deviations imposes

on the environment is that the investor cannot entertain models with different quantities of risk.

With Brownian shocks, volatility and correlation are instantly learnable, and hence create infinite

log-likelihood ratios. This is what limits model adjustments to drift corrections ht.

The problem of the investor is of the “multiplier” type:

max
{ct,θt}t≥0

inf
Q

EQ
[
ρ

∫ ∞

0

e−ρt log(ct)dt+

∫ ∞

0

e−ρtψtdmt

]
She chooses the alternative measure Q with potentially large losses and then maximizes utility
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over consumption and portfolio vectors that are robust to these losses. The discipline is provided

by the cost of deviating from the original measure as measured by ψtdmt for each increment of

time. Small values of the multiplier ψt make it easier to select pessimistic probability measures Q,

and the investor underestimates expected excess returns, which makes risky assets less attractive.

Proposition 3. Consider a robust investor with a cost process {ψt}t≥0. Her consumption

and portfolio choice coincide with those of an investor with a value-at-risk constraint given by a

multiplier process {γt}t≥0, where γt = ψt/(ψt + 1):

c(wt, xt) = ρwt

θ(wt, zt) =
ψt

ψt + 1
[σR(xt)σR(xt)

′]−1µR(xt)

The drift corrections she chooses for instantaneous returns are

h(wt, xt) =
1

ψt + 1
σR(xt)

′[σR(xt)σR(xt)
′]−1µR(xt)

Her value function is separable over wealth and exogenous states: V (wt, xt) = log(wt) + η(xt),

where η(·) solves a second-order partial differential equation.

Proof. Alternative measures Q are indexed by drift correction processes {ht}t≥0, so the problem

transforms into maximizing value over {ct, θt}t≥0 after minimizing it over {ht}t≥0. Moreover, the

cost function that penalizes the log-likelihood ratio turns into the quadratic expression ψ|h|2/2
because EQ[ψtdmt|Ft] = ψt|ht|2/2. The recursive representation of this problem is

ρV (w, x) = max
c,θ

min
h

ρ log(c) +
ψ|h|2

2
+ (r(x)w − c+ wθ′µR(x)− wθ′σR(x)h)Vw(w, x)

+
θ′σR(x)σR(x)

′θ

2
w2Vww(w, x) + µX(x)

′Vx′(w, x)

+
1

2
tr[σX(x)

′Vxx′(w, x)σX(x)] + wθ′σR(x)σX(x)
′Vwx′(w, x) (10)

The solution to equation (10)) can be guessed and verified. Conjecture that V (w, x) = log(w) +

η(x). Then, c = ρw and Vwx′(w, x) = 0, so the guess that V (·) is separable over w and other states

is correct. The model corrections and portfolio weights satisfy

h =
1

ψ
σR(x)

′θ

θ = [σR(x)σR(x)
′]−1(µR(x)− σR(x)h)
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This linear system can be solved as

h =
1

1 + ψ
σR(x)

′[σR(x)σR(x)
′]−1µR(x)

θ =
ψ

1 + ψ
[σR(x)σR(x)

′]−1µR(x)

Portfolio choice here coincides with that in equation (5), with γ = ψ/(1 + ψ) < 1.

The exogenous part of the value function η(·) satisfies the following partial differential equation:

ρη(x) = ρ log(ρ) + r(x)− ρ+
ψ

2(1 + ψ)
µR(x)

′[σR(x)σR(x)
′]−1µR(x)

+ µX(x)
′ηx′(x) +

1

2
tr[σX(x)

′ηxx′(x)σX(x)]

The partial differential equation is similar to one in the value-at-risk setup. The appropriate

boundary conditions depend on the process for x. □

The case ψt = 0 corresponds to infinite effective risk aversion, and the limit ψt −→ ∞ cor-

responds to a standard log investor who does not make any model adjustments because it is

prohibitively costly. For all positive ψt, portfolio weights are below those of a regular log investor,

meaning that robustness adjustments always decrease effective risk tolerance.

The resulting corrections account for the correlation structure of returns. Since making cor-

rections to all fundamental factors is equally costly, marginal gains in terms of pessimism should

be equalized across factors as well. These marginal gains depend on the correlation structure,

hence the weighting matrix σR(xt)
′[σR(xt)σR(xt)

′]−1 in the expression for h(wt, xt). For example,

if there is an element of dZt that no asset loads on, the corresponding column of σR(xt) is zero,

and the corresponding element of h(wt, xt) is zero too. The result of equalizing marginal gains in

pessimism across factors is that portfolio shares on risky assets are simply scaled down compared

to a regular log investor with no changes in relative weights.

Relation to standard robust preferences. Divorcing the shocks to returns dZt from aggregate

shocks dZ̃t is key to obtaining tractable mean-variance portfolios. In the standard setup, where

dZt and dZ̃t are not just perfectly correlated but coincide as processes, the investor considers

alternative models for exogenous states as well as returns:

dRt = µR(xt)dt+ σR(xt)dZt ≡ (µR(xt)− σR(xt)ht)dt+ σR(xt)dBt

dxt = µX(xt)dt+ σX(xt)dZt ≡ (µX(xt)− σX(xt)ht)dt+ σX(xt)dBt

The optimal choice of ht will now pick up the evolution of xt and its impact on the investor’s value

through the gradient Vx′(w, x). Since ht affects the optimal choice of θt, the optimal portfolio will
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pick up Vx′(w, x) too, and this will resurrect the hedging motive in portfolio choice. The solution

will coincide with that under Kreps and Porteus (1978) and Duffie and Epstein (1992) preferences.

The recursive representation of the problem is

ρV (w, x) = max
c,θ

min
h

ρ log(c) +
ψ|h|2

2
+ (r(x)w − c+ wθ′µR(x)− wθ′σR(x)h)Vw(w, x)

+
θ′σR(x)σR(x)

′θ

2
w2Vww(w, x) +

1

2
tr[σX(x)

′Vxx′(w, x)σX(x)] + wθ′σR(x)σX(x)
′Vwx′(w, x)

+ (µX(x)
′ −h′σX(x)′︸ ︷︷ ︸

new

)Vx′(w, x)

The solution V (w, x) = log(w) + log(η(x)) can be guessed and verified. Given this, c = ρw and

h =
1

ψη(x)
σX(x)

′ηx′(x) +
1

ψ
σR(x)

′θ

θ = [σR(x)σR(x)
′]−1(µR(x)− σR(x)h)

The fact that consumption is linear in w and (θ, h) only depend on x verifies the conjecture that

V (w, x) is log-separable over w and x. The optimal portfolio θ is given by

θ =
ψ

1 + ψ
[σR(x)σR(x)

′]−1µR(x)−
1

(1 + ψ)η(x)
[σR(x)σR(x)

′]−1σR(x)σX(x)
′ηx′(x)︸ ︷︷ ︸

hedging motive

This expression exactly coincides with equation (8) if γ = ψ/(1 + ψ).

Hedging motives disappear in the limit ψ −→ ∞. Another case where they disappear is one

with σR(xt)σX(xt)
′ = 0, meaning that returns and aggregate states load on different shocks: some

columns of σR(xt) and σX(xt) are zero, and the sets of their non-zero columns do not intersect.

This happens when returns are purely idiosyncratic, and aggregates do not load on idiosyncratic

shocks due to a large population. The application I provide in Section 5 is one such example.

Another example is that of Di Tella, Malgieri, and Tonetti (2024). In their economy, entrepreneurs

face idiosyncratic productivity risk realized after they decide how much labor to hire and commit

to pay given wages. The hiring decision is isomorphic to an investment problem with a risky asset.

There is a continuum of entrepreneurs, so idiosyncratic shocks do not drive aggregate dynamics,

and only individual returns load on them. For this reason, potential drift corrections applied to

idiosyncratic shocks would not appear in any process for aggregates, and there would be no need to

duplicate the shock processes to make robust preferences equivalent to a value-at-risk constraint.
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4 Aggregation with value-at-risk

I will now illustrate aggregative properties of the value-at-risk constraints in a simple environment.

Suppose there are n investors indexed by i. Investor i’s wealth is wit. Their value-at-risk multipliers

{γit} are potentially different and stochastic.

Maintain the assumption that there are b standard Brownian motions driving the d-dimensional

exogenous state xt ∈ X ⊆ Rd. The k risky assets are indexed by j. The supply sj of each asset

j is fixed, with sj > 0 for at least one j. The dividend yjt of asset j is a twice differentiable

function of aggregate states yj(·) : X 7→ R+. Investors solve the problem in equation (1) subject

to equation (2):

max
{cit,θijt}t≥0

E
[
ρ

∫ ∞

0

e−ρt log(cit)dt

]
s.t. Vt[θ

′
itdRt] ≤ γitEt[θ

′
itdRt] for all t ≥ 0

Their choice of portfolio shares θit = {θijt}kj=1 corresponds to a choice of share holdings in risky

assets hit = {hijt}kj=1 with pjthijt = θijtwit. The risk-free bond holdings bit = (1 − θ′
it1k)wit take

up the complementary portfolio share.

Given initial holdings, an equilibrium is a collection of processes for prices {pjt, rt}, wealth
{wit}, and quantities {cit,hit, bit} adapted to the filtration generated by {xt}t≥0 and satisfying the

following conditions. First, quantities are chosen optimally by agents, who take prices as given.

Second, the evolution of wealth is consistent with portfolio and consumption choices. Third,

markets for all assets and consumption goods clear:

sj =
∑n

i=1
hijt for all t ≥ 0 and all j ∈ {1, ...k}

0 =
∑n

i=1
bit for all t ≥ 0∑k

j=1
sjyjt =

∑n

i=1
cjt for all t ≥ 0

I will characterize equilibrium prices r(xt) and p(xt) = {pjt(xt)} as functions of aggregate states.

These aggregate states generally include the wealth vector wt = {wit}, and the epistemic assump-

tion is that agents treat these wealth processes as exogenous, not realizing that their own wealth

dynamics affect prices. This is what “taking prices as given” means. The evolution of prices is

dp(xt) = µp(xt)dt+ σp(xt)dZt

This defines the k-dimensional drift µp(xt) and the (k × b)-dimensional matrix of loadings σp(xt).

I look for equilibria in which prices are diffusions, which is why I require the dividend processes
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y(xt) to be twice differentiable functions of xt. Given the drift and loadings of prices, the j-th

component of excess returns is Et[dRjt] = [µp(xt) + y(xt) − r(xt)p(xt)]j/[p(xt)]j, and its loading

on dZlt is [σp(xt)]lj/[p(xt)]j for all components l ∈ {1, ...b} of the underlying diffusion.

Let s = {sj} be the vector of asset supply. Let wt = p(xt)
′s denote the total wealth with

dwt

wt

= µw(xt)dt+ σw(xt)dZt ≡
µp(xt)

′s

p(xt)′s
dt+

s′σp(xt)

s′p(xt)
dZt

Define Γt as an average of value-at-risk parameters {γit} weighted with wealth shares νit = wit/wt:

Γt =
∑n

i=1
γitνit

Since agents optimally consume a fraction ρ of their wealth, ρwt = y(xt)
′s, and hence total wealth

is exogenous. It follows that the endogenous dynamics are fully described by wealth shares.

To complete the description of equilibrium, define the total leverage of investor i as λit = θ′
it1k.

Straightforward manipulation of the market clearing conditions leads to the following characteri-

zation of leverage λit, individual holdings hijt, wealth shares, and equilibrium prices.

Proposition 4. In equilibrium, total leverage of each agent i is λit = γit/Γt. Individual

holdings of risky assets are hijt = sj · νitλit. Risky asset prices and the interest rate satisfy

r(xt)p(xt) = µp(xt) + y(xt)−
σp(xt)σw(xt)

′

Γtwt

(11)

r(xt) = ρ+ µw(xt)−
|σw(xt)|2

Γt

(12)

Wealth shares {νit} follow

dνit = νit(λit − 1) ·
[
1− Γt

Γt

|σw(xt)|2dt+ σw(xt)dZt

]
(13)

The first property of the value-at-risk constraint is that the equilibrium leverage is given by a

simple expression γit/Γt. The wealth-weighted leverage is always equal to one: the economy overall

cannot hold a non-zero position in risk-free bonds. Underlying this is considerable heterogeneity

between investors. Since Γt is a convex combination of γit, the investor with the highest γit always

borrows in the risk-free asset, and the one with lowest γit always lends. If all investors have the

same γit, everyone’s leverage is one, and none has a gross position in the risk-free.

The share of asset j held by investor i is hijt/sj = νitλit. It does not depend on j. Investors

have the same portfolios of risky assets up to scale. If everyone’s γit is the same then everyone

holds zero in the risk-free bond, implying everyone holds the same market portfolio, and differences
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in positions only reflect wealth differences.

Equation (11) is the main asset pricing equation of the model. One part of the equation is

well known from risk-neutral pricing models, where r(xt)p(xt) = µp(xt) + y(xt). The content

of equation (11) is the last term: the risk adjustment to prices p(xt) is given by the variance-

covariance matrix of prices, with Γt acting as the aggregate risk tolerance of the market. This is

the main tractability gain of the value-at-risk constraint: the impact of endogenous variables on

prices is summarized by a single weighted average Γt. With hedging motives, aggregation would

be considerably harder, since it would have to account for the heterogeneous marginal value of

wealth, which usually requires one extra partial differential equation per agent.

Equation (12) shows that the interest rate has three components: time discounting, growth,

and precautionary motives. Growth is given by the drift µp(xt)
′s in total wealth p(xt)

′s, while

precautionary motives depend on the variance of total wealth |s′σp(xt)|2, with Γt < 1 amplifying

the depression in r(xt). The source of this depression, as usual, is uninsured risk.

The vector of wealth shares {νit} is the full description of endogenous states. Unsurprisingly,

equation (13) shows that νit is positively exposed to σw(xt)dZt, which represents shocks to total

wealth wt = s′p(xt), if λit > 1. Wealth shares of levered investors are positively correlated with

aggregate wealth. What is less obvious is that νit also drifts up if and only if λit > 1. This happens

because i in this case goes short in the risk-free bond and earns a net risk premium. With Γt < 1

amplifying the depression in the risk-free rate, going short in the risk-free is a strategy that puts

a levered investor ahead of the average in expectation. Hence the term 1/Γt − 1 in the drift of νit.

Heterogeneity in γit is necessary for wealth redistribution after shocks dZt. If everyone had the

same γit, even varying over time, then everyone’s leverage would be one, and wealth shares would

be fixed forever. The weighted average Γt would then move exogenously. This could be desirable

in applications because it would reduce the dimensionality of the problem. Section 5 presents an

example that uses an exogenously driven Γt.

A converse case to homogeneous γit varying over time is the one with heterogeneity in γit but

no time variation: dγit = 0. I present one such example below. In this case, it is possible to sign

the drift of Γt.

Corollary 1. If dγit = 0 for all i and t, then

dΓt =
Θt

Γt

·
[
1− Γt

Γt

|σw(xt)|2dt+ σw(xt)dZt

]
Here Θt is the wealth-weighted dispersion of the multipliers:

Θt =
∑n

i=1
νitγ

2
i −

(∑n

i=1
νitγi

)2
≥ 0
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Aggregate risk tolerance is positively exposed to shocks to aggregate wealth σw(xt)dZt. This

is because investors with higher γit become relatively richer after positive shocks, driving up the

weighted average. The drift is positive too, reflecting the upward drift in the wealth shares of less

constrained investors due to the risk premia they collect.

A combination of the two cases is when time-variation further shuts down and all γit are

constant. Then Γt is fixed. This nests, for example, Cochrane, Longstaff, and Santa-Clara (2008),

where a single investor with log utility trades two Lucas trees.

A final observation is that a general economy with heterogeneous and stochastic {γit} is compa-

rable to one with a representative agent in the following, very particular, sense. For every economy

with a collection of processes {γit}, there exists a counterfactual single-investor economy with the

same processes for all prices. The value-at-risk multiplier of the investor in the counterfactual

economy equals Γt from the original one on all sample paths. Given the exogenous processes for

{γit} and those for wealth shares given by equation (13), one can construct the process for Γt using

Itô’s lemma. Equation (11) and equation (12) are then trivially satisfied in the counterfactual

economy too. Of course, in a truly representative-agent economy, the law of motion of Γt would

only depend on Γt itself and exogenous parameters. This is not generally true: the evolution of Γt

depends on the dispersion Θt, which in turn depends on higher moments and so on.

Example. I now illustrate a tractable special case with one part of the setup from Caballero and

Simsek (2020). The claim to total output is the only risky asset. There are two investors with

different value-at-risk parameters. In equilibrium, the one with a less tight value-at-risk constraint

borrows from the other one to bet on output growth. Output shocks redistribute wealth and

change the equilibrium risk premium, which leads to changes in the interest rate. I characterize

the law of motion of wealth shares, the risk premium, and the interest rate in closed form.

The value-at-risk coefficients γi ∈ {1, 2} are constant. Output is produced by a Lucas tree in

unit supply, s = 1. The flow output of the tree is ytdt, where the rate of production evolves as

dyt
yt

= µdt+ σdZt

The tree price is pt, and excess returns on the tree are dRt = (dpt+ytdt)/pt−rtdt. Since the supply
is normalized to one, total wealth is equal to the tree’s price: ρpt = yt. The price-dividend ratio

is constant, and the capital gains process coincides with that of output growth. Excess returns

transform into dRt = (ρ+µ− rt)dt+σdZt. Denote the expected excess returns by xt ≡ ρ+µ− rt.

This is the equilibrium risk premium. With a constant price-dividend ratio, the dynamics of the

interest rate exactly mirror those of xt.

Taking equation (12) from Proposition 4 and using the fact that pt = yt/ρ, µp(yt) = µyt/ρ,
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and σp(yt) = σyt/ρ leads to xt = σ2/Γt. The risk premium is inversely proportional to the

wealth-weighted effective risk tolerance. When the agent with a less tight value-at-risk constraint

accumulates more wealth, the market’s aggregate risk tolerance rises, and the risk premium falls.

Since the price-dividend ratio is fixed, this is achieved through a higher interest rate.

With just one risky asset, every investor’s leverage is equal to her risky portfolio share: λit = θit,

and hence θit = γixt/σ
2. As a result, wealth dynamics can be represented as

dwit

wit

= (rt − ρ+ θitxt)dt+ θitσdZt =

(
µ− xt + γi

x2t
σ2

)
dt+ γi

xt
σ
dZt (14)

The term µ − xt reflects the consumption-savings trade-off. A high risk premium xt lowers the

interest rate due to precautionary motives, inducing individual investors to save less. The term

γix
2
t/σ

2 is the compensation for risk. Higher γi leads the investor to take a longer position in the

tree and raises the compensation. The exposure of i’s wealth to dZt also rises with γi.

The growth of wealth only depends on the risk premium xt and fixed parameters. This implies

that the evolution of wealth shares only depends on xt, and so does the evolution of xt itself.

Denote the two values of γi by {γ, γ} and assume γ > γ. Denote the corresponding wealth shares

by νt and νt ≡ 1− νt. Define the drift and volatility of wealth shares and risk premium:

dνt = µν(νt)dt+ σν(νt)dZt

dxt
xt

= µx(xt)dt+ σx(xt)dZt

A straightforward application of Itô’s lemma leads to the following result.

Proposition 5. The drift and volatility of ν(xt) are

µν(νt) = νt (1− νt) ·
σ2(γ − γ) (1− νtγ − (1− νt)γ)

(νtγ + (1− νt)γ)
2

σν(νt) = νt (1− νt) ·
σ(γ − γ)

νtγ + (1− νt)γ

with µν(νt) > 0 and σν(νt) > 0 for all xt. The drift and volatility of the risk premium are

µx(xt) =
(γxt − σ2) (σ2 − γxt)

σ6
· xt
(
σ2(γ + γ − 1)− γγxt

)
< 0

σx(xt) =
(σ2 − γxt) (σ

2 − γxt)

σ3

with µx(xt) < 0 and σx(xt) < 0 for all xt.

The less constrained investor’s wealth share is positively exposed to output growth. The drift
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of her wealth share is also positive since she earns a higher compensation for risk, as evident

from equation (14). This makes the drift in xt negative: the less constrained investor is gradually

becoming richer, raising the market’s risk tolerance.

Both drift and volatility increase in the difference γ−γ, which measures polarization in attitudes

to risk. The difference in effective risk tolerance is what creates different portfolio allocations and

ultimately allows output shocks to induce redistribution towards more risk-tolerant agents. This

is a simplified version of the mechanism that Caballero and Simsek (2020) use to make shocks

raise the interest rate. Good shocks redistribute wealth towards the less constrained agent, who

is always betting on growth. This lowers the risk premium in equilibrium, but with a constant

price-dividend ratio, changes in risk premia fully pass through to the interest rate.

Inducing stationarity. The setup above is not stationary in general. As the wealth share of the

less constrained agent approaches one, its volatility decreases toward zero too fast, and it cannot

bounce back with high enough probability. The risk premium approaches its lower bound σ2/γ. To

induce stationarity in this setup, one can use simple redistributive wealth taxes. By Proposition 2,

they do not change portfolio choice. Change agent i’s budget constraint to

dwit = (rtwit − cit)dt+ θitwitdRit − Titwitdt

Specify the tax rate Tit as a following function of i’s wealth share νit: Tit = T (νit), where

T (νit) = τ

(
νit −

1

2

)√
1− νit
νit

This tax policy balances the budget:

∑
i∈{1,2}

Titwit = wt ·
∑

i∈{1,2}
Titνit = τwt ·

∑
i∈{1,2}

(
νit −

1

2

)√
νit(1− νit) = 0

Importantly, agents i takes Tit as given and does not realize how her wealth accumulation affects

the tax rate. The fact that agents still perceive dwit as linear in wit preserves the functional forms

of consumption and portfolio choice. The law of motion of ν(xt) and xt are only slightly altered:

Proposition 6. The dynamics of νt and xt are

dνt = µν(νt)dt+ σv(νt)dZt − τ
√
νt(1− νt) ·

2νt − 1

2
dt

dxt = µx(xt)dt+ σx(xt)dZt − τ
√

(γxt − σ2) (σ2 − γxt) ·
2σ2 − (γ + γ)xt

2σ2(γ − γ)
dt

where µν(·), σν(·), µx(·), and σx(·) are given in Proposition 5.

18



Taxes push the risk premium xt away from its boundaries σ2/γ and σ2/γ by pushing the wealth

shares away from their boundaries 0 and 1. Taxes converge to zero as νt approaches 0 or 1, but

they do it at a slower rate than volatility σν(·), and this induces stationarity.

Figure 1: Left panel: drift and volatility of xt. Right panel: drift and volatility of νt.

Figure (1) shows µx(·), σx(·), and the ergodic density of xt on the left, and the same for the

wealth share νt on the right. I take γ = 1, γ = 0.2, σ2 = 0.02, and τ = 0.01 for this example. The

values of µ and ρ do not affect the dynamics and levels of the risk premium and only determine

the interest rate through rt = ρ+ µ− xt.

Discussion. This example highlights one cost and one benefit of the value-at-risk. An empiri-

cally undesirable feature of the model is the constant price-dividend ratio and the exact mirror

relationship between the risk-free rate and the risk premium. This feature is typical of one-asset

economies with log utility, and value-at-risk cannot break it. A clear benefit of the value-at-risk is

that endogenous processes only affect asset prices and the risk-free rate through a weighted average

Γt. This leads to simple expressions for the interest rate in one-asset economies with geometric

Brownian shocks paralleling those in Cochrane, Longstaff, and Santa-Clara (2008), to which my

example is a natural converse: two agents and one tree instead of one agent and two trees. In

Cochrane, Longstaff, and Santa-Clara (2008) dividend shares of the two trees move risk premia

and the interest rate by changing equilibrium risk exposures of the agent: a high concentration

of dividends increases the quantity of risk. In my example and in Caballero and Simsek (2020),

the quantity of risk is fixed, and prices of risk change endogenously due to redistribution between

heterogeneous agents.

There are two reasons for the acyclicality of leverage in my setup: markets are fully integrated

and risk-free assets are in zero net supply. The fact that wealth-weighted λit is equal to one is an

accounting identity. To make the discussion of leverage cyclicality meaningful, one would need to

segment the markets or designate a subset of the agents as intermediaries, or natural buyers in the

terminology of Geanakoplos (2010a), focusing on their leverage only. For instance, designating the
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more risk-tolerant agent in the two-agent example as an intermediary creates countercyclical lever-

age typical of models in Brunnermeier and Sannikov (2014) and He and Krishnamurthy (2013).

Good output shocks redistribute wealth to the risk-tolerant agents, depressing the market risk pre-

mium and lowering her risky portfolio share. The empirically relevant case is procyclical leverage,

as shown by Geanakoplos (2010b), Adrian and Shin (2014), and Kalemli-Ozcan, Sorensen, and

Yesiltas (2012). Obtaining this would require more agents, more assets, or market segmentation.

5 Application: cross-section of defaultable bonds

In this section, I apply the value-at-risk constraint to a setting with sovereign default. Multiple

countries issue defaultable bonds to intermediaries with time-varying value-at-risk constraints.

Simplifying the model in all dimensions other than the lenders’ preferences, I compute the cross-

section of bond prices by solving the usual pricing equation found in models of the Leland (1994)

type with one additional term. This term reflects the effective risk aversion of the market and

introduces a common time-varying component to the price of risk.

I then solve for the global interest rate as a function of the value-at-risk multiplier. Importantly,

the equilibrium interest rate is stochastic, adding aggregate interest rate risk to idiosyncratic

default risk. Time-varying effective risk tolerance of the lenders additionally generates endogenous

pricing risk typical for Brunnermeier and Sannikov (2014) models. One implication is that the

value-at-risk constraint changes both the price and the quantity of risk in equilibrium. Another

implication is that aggregate shocks introduce precautionary motives, depressing interest rates and

inflating asset prices. As a result, away from the default threshold, defaultable bond prices are

higher than they would be in a counterfactual economy with risk-neutral lenders.

The global economy has a single consumption good. It is populated by two types of agents:

sovereigns and financial intermediaries. There is a unit measure of sovereigns, indexed by i. Each

of them produces xit units of consumption goods per unit of time when business goes as usual.

Sovereigns are in debt: every one of them has one bond outstanding and can be either current or

in default. When current, sovereigns pay coupons κ per unit of time, and their economies operate

as usual, producing fiscal surpluses at full potential. Their productivity xit evolves as

dxit
xit

= µdt+ σdZit

Shocks dZit are independent across i. When in default, sovereigns do not make coupon payments

and cannot produce and consume surpluses. Productivity in the default state evolves as

dxit
xit

= µdt+ σdZit
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Here µ > µ, capturing reform or reorganization that the country undergoes when in default.

Countries can go into default and back at any time. Their bonds are not written down, and there

is no cost of default other than the inability to produce. The problem of a sovereign is

V sov
i,0 = max

{∆it}t≥0

E0

[∫ ∞

0

e−ρt(xit − κ)(1−∆it)dt

]
s.t.

dxit
xit

= (µ+ (µ− µ)∆it)dt+ σdZit

Sovereigns are risk-neutral. They only choose when to go in and out of the default state (∆it = 1

or ∆it = 0), do not participate in other trades, and consume output minus coupons:

csovit = (xit − κ)(1−∆it)

The second type of agent are intermediaries, who act as lenders. Each country i is matched

to a unit measure of intermediaries. This assignment means that only intermediaries of type i

have access to country i’s bond, which is trading at a price pit. They also trade instant-maturity

risk-free debt, which pays an interest rate rt.

All intermediaries are part of the same large financial firm. They can be interpreted as trading

desks, and the market for short-term bonds can be interpreted as an intra-firm funding market.

The headquarters exogenously set up two other types of flows between desks. First, there is default

coverage: each intermediary of type i pays a premium πtdt and receives payments κdt when bond

i is in default. Second, there is a profit tax: each intermediary of type i sends payments dτit to

the headquarters. These redistributive payments re-capitalize losing trading desks at the expense

of winning ones. Wealth evolves as

dwit = (rtwit − cit)dt+ witθitdRit −
wit

ŵit

(πt − κ∆it)dt−
wit

ŵit

dτit

The problem of an intermediary of type i is

V int
i,0 = max

{cit,θit}t≥0

E0

[∫ ∞

0

e−ρt log(cit)dt

]
s.t.

Vt [θitdRit] ≤ γt · Et [θitdRit]

Each intermediary of type i chooses her consumption and portfolio share θit of the defaultable

bond. Here ŵit is the aggregate wealth of the intermediaries that each one of them takes as given.

Taxes and default coverage payments are distributed in proportion to wealth within each type i.

Looking ahead, in a symmetric equilibrium wit = ŵit, but budget constraints have to look this way

to preserve consumption and portfolio choice in keeping with Proposition 2.
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The internal default swap premium π is chosen to make default coverage self-financing on

aggregate:

πt = κ ·
∫

∆itdi

The profit taxes have the following form:

dτit = dpit − rtpitdt−
(∫

dpjtdj −
∫
pjtdj · rtdt

)
Trading desks send their excess capital gains to the headquarters. These redistributive payments

are also self-financing on aggregate.

Excess returns dRit on sovereign bonds are given by

dRit =
κ(1−∆it)dt+ dpit

pit
− rtdt

Portfolio share θit implies risky holdings hit = θitwit/pit and risk-free debt holdings bit = (1−θit)wit.

The tightness γt of the value-at-risk constraint is common to all i and stochastic. It evolves as

dγt = µγ(γt)dt+ σγ(γt)dWt

Given initial conditions {hi,0, bi,0, xi,0} and the filtration generated by {xit}t≥0, an equilibrium is

a collection of adapted price processes {{pit}, rt}t≥0, wealth processes {{wit, ŵit}}t≥0, quantity

processes {{cit, hit, bit}}t≥0, and default processes {{∆it}}t≥0 satisfying the following conditions.

First, sovereigns optimally choose their default state. Second, intermediaries optimally choose their

holdings, taking the default states, prices, and aggregate wealth of their type as given. Third, the

evolution of individual and aggregate wealth of each type is consistent with the quantity choices.

Fourth, markets for every bond i, risk-free debt, and consumption goods clear:

1 = hit for all i, t ≥ 0

0 =

∫
bitdi for all t ≥ 0∫

xit(1−∆it)di =

∫
(csovit + cit)di for all t ≥ 0

Equilibrium characterization. The sovereigns’ block of the model is a simple decision problem

that does not depend on equilibrium objects. They follow a standard threshold default policy

∆it = 1{xit < x̂}. Individual productivity follows dxit = (µ + (µ− µ)1{xit < x̂})xitdt + σxitdZit.

I summarize this block of the model in the following proposition.
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Proposition 7. Suppose ρ > µ ≥ µ. The optimal default threshold x̂ is

x̂ = κ · ρ− µ

ρ
· ζζ(
ζ − 1

)(
ζ − 1

) > κ

Here ζ > 1 and ζ < 0 only depend on (µ, µ, σ, ρ). The invariant distribution of x has density

g(x) =
(1 + ξ)(1 + ξ)

(ξ − ξ)x̂
·
(x
x̂

)ξ1{x<x̂}+ξ1{x≥x̂}

Here ξ > 0 and ξ < −1 only depend on (µ, µ, σ). The default ∆̂ share at this distribution is

∆̂ =
ξ + 1

ξ − ξ
=

√
(µ− σ2)2 + σ4 − µ+ σ2√

(µ− σ2)2 + σ4 − µ+
√

(µ− σ2)2 + σ4 + µ

I will focus on the productivity steady state, assuming that the economy starts at the invariant

distribution. This will shut down aggregate shocks to the quantity of default risk.

Unlike in the model of Leland (1994), the default threshold for cash flows is above the coupon.

Sovereigns do not have to abandon the country when they go into default, so betting on resurrection

does not have option value. Instead, countries go into default when cash flows are still above the

break-even level to take advantage of faster productivity growth µ > µ. The technical motivation

for using this law of motion for xit is that it induces a stationary distribution. Another option

would be to reset countries in default to some initial productivity level x0, but this would create

discontinuous wealth dynamics for intermediaries attached to them. Discontinuities in the sample

paths of returns destroy the tractable portfolios afforded by value-at-risk.

Consumption and portfolio choice of intermediaries is standard. Moreover, if they start with

the same initial wealth wi,0, the way taxes dτit and insurance coverage are set up induces wealth to

be constant over time and across i. To see this, observe first that the aggregate wealth is constant:

consumption choice cit = ρwit and consumption market clearing imply∫
witdi =

κ− π

ρ

Since risk-free bonds are in zero net supply, total wealth is the average bond price. Hence,∫
dpitdi =

∫
dwitdi = 0

dτit = dpit − rtpitdt+
rt
ρ
(κ− π)dt
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Next, market clearing for defaultable bonds implies hit = 1, which means θitwit = pit. Plugging

this and consumption choice cit = ρwit into the budget constraint of the intermediaries,

dwit = (rt − ρ)witdt+ pitdRit + (κ∆it − π)dt− dτit

= (rt − ρ)witdt+ dpit − rtpitdt+ (κ− π)dt− dτit

= (ρ− rt)

(
wit −

κ− π

ρ

)
If all intermediaries start with the same wealth, it must be equal to (κ−π)/ρ. But then dwit = 0 for

all t ≥ 0, implying wit = (κ−π)/ρ for all i and t > 0. Profit taxes shut down wealth heterogeneity

across trading desks. The technical importance of this is that solving the model does not require

tracking the wealth distribution, which would complicate solving for dynamics of pit and rt.

The two remaining state variables in the model are xit and γt. I can now characterize defaultable

bond prices as functions of (x, γ) and the interest rate as a function of γ only, with dp(x, γ) loading

on the corresponding driving shocks:

dp(x, γ) = µp(x, γ)dt+ σpx(x, γ)dZt + σpγ(x, γ)dWt ≡ µp(x, γ)dt+ σp(x, γ) · dXt

Here dXt = (dZt dWt)
′ combines both shocks that p(x, γ) is exposed to in equilibrium. Abusing

notation, I drop the i subscript on dZit ≡ dZt. Expected excess returns and their variance are

E[dR(x, γ)|x, γ] = E[dp(x, γ) + (1−∆(x))κdt− r(γ)p(x, γ)dt|x, γ]
p(x, γ)

V[dR(x, γ)|x, γ] = V[dp(x, γ)|x, γ]
p(x, γ)2

Market clearing and optimal portfolio choice imply γw ·E[dR(x, γ)|x, γ] = p(x, γ) ·V[dR(x, γ)|x, γ].
Applying Itô’s lemma to get µp(·) and σ(·),

r(γ)p(x, γ) = κ(1−∆(x))+px(x, γ)µ(x) + pγ(x, γ)µγ(γ) + pxx(x, γ)
σ2x2

2
+ pγγ(x, γ)

σγ(γ)
2

2

− (px(x, γ)σx)
2 + (pγ(x, γ)σγ(γ))

2

γw︸ ︷︷ ︸
risk correction

(15)

The first line in equation (15) is standard and appears in all models with risk-neutral investors

pricing the bonds. Expected gains on holding the bond are equal to the coupon plus the capital

gains. The drift in the underlying states leads to expected capital gains, hence the terms including

px(·) and pγ(·). Since p(·) is non-linear, volatility in the underlying states creates more drift in

capital gains, which is reflected in the terms including pxx(·) and pγ(·).
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The last term, the risk correction, comes from investors’ risk aversion. This risk correction

is a product of the price of risk (γw)−1, where w = (κ − π)/ρ is investors’ wealth, and the

quantity of risk captured by the loadings of the price on x and γ. All local risk away from the

default threshold x̂ here is endogenous in the terminology of Brunnermeier and Sannikov (2014):

it reflects the volatility of prices. Using a simple log investor would also lead to risk correction

with γ = 1, but risk would only be coming from cash flows x. Using the value-at-risk constraint

allows the model to incorporate aggregate shocks to risk-taking capacity that lead to time-varying

risk premia and interest rates, adding interest rate risk to default risk.

The interest rate r(γ) is the last remaining piece of equilibrium characterization.

Proposition 8. The interest rate is

r(γ) = ρ− ρ2

γ(κ− π)2

∫
|σp(x, γ)|2g(x)dx (16)

where |σp(x, γ)|2 = (px(x, γ)σx)
2 + (pγ(x, γ)σγ(γ))

2.

As usual, the interest rate is depressed relative to the subjective discount rate ρ because of ag-

gregate risk that is uninsurable and hence creates precautionary saving motives. The gap between

ρ and r(γ) is proportional to the total amount of risk given by the variance of price growth and

inversely proportional to global risk-taking capacity γ.

Solving equation (15) numerically requires a two-dimensional grid, and the algorithm is min-

imally demanding. The key simplification is that wealth heterogeneity between intermediaries is

shut down, and both remaining state variables (x, γ) are essentially exogenous. This means that

there is no need to iterate over the equilibrium distribution of states. The only loop required to

solve for equilibrium alternates solving equation (15) given a conjecture for r(·) and updating this

conjecture using the resulting p(·) in equation (16).

I choose the following dynamics of γt for a numerical example:

µγ(γ) =
ας2

2
(γ + γ − 2γ)

σγ(γ) = ς
√

(γ − γ)(γ − γ)

With the drift and volatility specified this way, the invariant distribution of γ is a Beta-distribution

on [γ, γ] with parameters (α, α). The model is parameterized by (ρ, κ, µ, µ, σ, α, ς, γ, γ). I choose

the following values for a numerical example: ρ = 0.1, κ = 0.08, σ = 0.1, µ = 0, and µ = 0.06:

productivity is growing at the rate of 6% when restructuring and stagnating on average when

current. These numbers lead to approximately 80% of countries paying coupons at any given time.

For the dynamics of the value-at-risk parameter, I choose γ = 0.2, γ = 1.0, α = 5, and ς = 0.1,

which induces a symmetric Beta distribution.
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Figure (2) describes equilibrium prices. Panel (a) shows the risk-free rate with the invariant

distribution of γ in the background. The interest rate is lower than the subjective discount rate

ρ, and the difference increases as the effective risk tolerance γ falls. Second, panel (b) shows the

risk correction term in equation (15) with the invariant distribution of x in the background. The

magnitude of this term should be compared to coupons and r(γ)p(x, γ). It is predictably larger

for lower γ and spikes around the default threshold, where coupon risk is tangible. Away from the

threshold, default risk becomes a distant possibility.. It spikes around the default threshold due

to a discontinuity in the drift: µ > µ, reflecting faster growth during restructuring.

Panels (c) and (d) slice the common component σpγ/p of return volatility along x and γ. First,

panel (c) shows σpγ(x, ·)/p(x, ·) as a function of γ for three different levels of x. The loading σpγ/p

becomes very small at the extremes since the volatility of γ itself goes to zero there. Between the

extremes, the sign of the loading depends on x, and this dependence is non-monotonic. For x far

enough from the default threshold, returns load on risk-taking capacity negatively since rising γ

raises the interest rate. A change in the default status becomes more probable as x approaches

the default threshold from either side, and in that region, changes in γ also tangibly affect the risk

premium, so the loading σpγ/p is positive. Panel (d) makes this clear by plotting σpγ(·, γ)/p(·, γ)
as a function of x for two different levels of γ.

Spreads. I next describe spreads and illustrate their common component. Define the spread

y(x, γ) as the price difference between the bonds in the model and counterfactual securities without

default risk:

y(x, γ) = log(p̂(γ))− log(p(x, γ))

Here the counterfactual price function p̂(γ) solves

r(γ)p̂(γ) = κ+ p̂′(γ)µγ(γ) + p̂′′(γ)
σγ(γ)

2

2
− (p̂′(γ)σγ(γ))

2

γw

The risk correction is still present, reflecting lenders’ risk aversion and the interest rate risk.

Comparing p(x, γ) to p̂(γ) only strips out default risk.

Define the loadings on the local and global shocks σyx(·) and σyγ(·):

dy(x, γ) = µy(x, γ)dt+ σyx(x, γ)dZt + σyγ(x, γ)dWt

The common component is σy(γ)dWt averaging the loadings on the global shock:

σγ(γ) =

∫
σyγ(x, γ)g(x)dx = −σγ(γ)

∫ (
κpγ(x, γ)

p(x, γ)2
+ r′(γ)

)
g(x)dx
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Figure 2: solution of the model.

(a) Risk-free rate as a function of γ (b) Risk correction in equation (15)

(c) Common component σpγ(x, ·)/p(x, ·) as a
function of γ for different levels of x

(d) Common component σpγ(·, γ)/p(·, γ) as a
function of x for different levels of γ

These loadings are easy to compute once one has p(·) and r(·). Figure (3) plots σyγ(·, γ) as a
function of x for two different levels of γ and the common component σy(·).

Risk-neutral benchmarks. How different is p(·) with risk-neutral lenders? I illustrate the

differences in two ways with Figure (4). First, panel (a) reports the log difference between p(x, γ)

and a counterfactual risk-neutral valuation of the bond that solves the standard pricing equation:

r(γ)p(x, γ) = κ(1−∆(x))+px(x, γ)µ(x) + pγ(x, γ)µγ(γ) + pxx(x, γ)
σ2x2

2
+ pγγ(x, γ)

σγ(γ)
2

2

To compute this counterfactual valuation, I keep the interest rate the same function of γ as in the

baseline. This exercise shows how departing from risk neutrality leads to p(x, γ) pricing in both

default and interest rate risk. The latter necessarily arises in general equilibrium with risk aversion

and tangibly changes prices. Panel (b) makes this clear by eliminating the changes in the interest

rate. The counterfactual valuation p̃(·) on this figure solves
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Figure 3: comparison to counterfactual prices.

(a) loadings σyγ(·, γ) as a function of x (b) common component in spreads σγ(·)

ρp̃(x) = κ(1−∆(x)) + p̃′(x)µ(x) + p̃′′(x)
σ2x2

2

The interest rate is set at the level ρ, which would happen in equilibrium if intermediaries were

risk-neutral. Since γ does not affect the interest rate now, it drops from the arguments of p̃(·). In
fact, there is an explicit solution for the bond price in this well-studied case:

p̃(x) =


κ

ρ
· ζ

ζ − ζ
·

(
x

x̂

)ζ

for x ≤ x̂

κ

ρ
·

1 +
ζ

ζ − ζ
·

(
x

x̂

)ζ
 for x ≥ x̂

Here ζ < 0 and ζ > 0 are the coefficients from Proposition 7 that only depend on (µ, µ, σ, ρ). I

provide their functional forms in the proof.

The takeaway from panel (d) is that the equilibrium price of defaultable bonds is only lower than

its risk-neutral counterpart around the default threshold. Departing from the threshold, default

risk subsides, and bond prices in the risk-averse economy exceed the risk-neutral benchmark due

to lower interest rates. Precautionary motives inflate all asset prices, and this effect dominates

when the default threshold is far away.

Discussion. Value-at-risk allows one to add aggregate shocks to risk preferences to the model

while keeping it tractable. Using intermediaries that maximize log utility would also add the

risk correction term to the pricing equation (15), but risk aversion would be fixed at one. Using

recursive preferences or power utility to vary the risk correction would cause equation (15) to lose
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Figure 4: comparison to counterfactual prices.

(a) Log bond price relative to partly risk-neutral
valuation log(p(x, γ))− log(p(x, γ))

(b) Log bond price relative to fully risk-neutral
valuation log(p(x, γ))− log(p̃(x))

its tractable form. Value-at-risk allows one to keep the functional form of the risk correction term,

simply adding the time index to γ and adding γ to state variables. General equilibrium is then

easy to characterize and compute numerically.

A crucial assumption that makes general equilibrium easily computable with aggregate shocks

and a whole cross-section of countries is the absence of endogenous distributions. The distribution

of cash flows is exogenous and does not have to be explicitly tracked. In a related model, Oskolkov

(2024) uses Lucas trees located in different countries instead of defaultable bonds. Countries also

have local investors who hold the trees together with intermediaries. There is a non-degenerate

wealth distribution across countries, which creates a full cross-section of risk premia in equilibrium

but makes aggregate shocks to γ unpalatable computationally.

6 Related literature

Value-at-risk measures are widely used in banking. Stulz (2016) explains the use of value-at-

risk in banks’ framework in detail. Sizova (2023) collects information on banks updating their

models from financial reports. She shows that banks often mention “value-at-risk models” in their

reports. Their model revisions respond to changes in regulation and to events affecting the banks’

own performance. Barbiero, Bräuning, Joaquim, and Stein (2024) collect data on risk limits faced

by the largest US banks. They show that 165 of 167 trading desks whose activities are related

to currency trading face value-at-risk constraints. Adrian and Shin (2010) show that the ratio

of value-at-risk to capital at the largest US banks was fairly constant in 2000-2007. Adrian and

Shin (2014) extend measurements to the after-crisis times, when regulation changed significantly,

and find that the value-at-risk to equity ratio seems relatively stable across regimes. They then

provide a foundation for this constraint using the contractual framework from Holmstrom and
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Tirole (1997). Value-at-risk restrictions emerge endogenously when banks use debt financing,

enjoy limited liability, and choose between extreme value-distributed investment opportunities

with different riskiness.

The literature using value-at-risk constraints for modeling portfolio choice dates back to at

least Danielsson, Shin, and Zigrand (2012) and Adrian and Boyarchenko (2018). These papers

use continuous-time models, where intermediaries’ risky positions are subject to the following

constraint: the standard deviation of the excess returns cannot exceed a multiple of net worth.

Intermediaries form mean-variance portfolios with the Lagrange multiplier on the constraint act-

ing as the time-varying risk aversion coefficient. The leverage of the intermediaries is inversely

proportional to the variance of returns. Danielsson, Shin, and Zigrand (2012) and Adrian and

Boyarchenko (2018) make use of these properties to arrive at countercyclical leverage and obtain

the “volatility paradox”: low exogenous volatility coincides with high leverage, which leads to high

systemic risk. Hofmann, Shim, and Shin (2022) use the same constraint to show the impact of

dollar appreciation on portfolio inflows in emerging markets. My formulation of the value-at-risk

constraint is different in that I cap the total variance of returns, rather than the standard devia-

tion, and I use a flow (expected profits) rather than the stock of wealth as the upper bound on risk

exposure. The result is mean-variance portfolios with time-varying risk aversion explicitly given

as a primitive of the model instead of an endogenous Lagrange multiplier. This allows for more

transparent aggregation and simplifies the use of attitudes to risk as a driver of shocks.

A desirable feature of the value-at-risk constraints is the procyclical leverage they generate.

Kalemli-Ozcan, Sorensen, and Yesiltas (2012) show this empirically. Shin (2012) uses this property

to argue that the leverage cycle of global banks drives credit supply and loan risk premia in the US.

Coimbra (2020) models intermediaries with an occasionally binding value-at-risk constraint. In

busts, when intermediaries are up against the constraint, risk-averse households absorb the residual

supply of risky assets, which leads to a rise in risk premia. Coimbra and Rey (2024) model a cross-

section of intermediaries with different value-at-risk constraint parameters. Some intermediaries

are inactive, and active ones choose different risk exposures. Changes in expected productivity

and interest rates induce changes in both extensive and intensive margins of their risk-taking,

moving the aggregate leverage of the financial sector. Intermediaries are short-lived, so interest

rate and productivity news lead to a reallocation of activity rather than wealth redistribution

between them. My environment allows for wealth redistribution and exogenous changes in risk

preferences but does not incorporate the extensive margin of activity. Another difference is that

Coimbra (2020) and Coimbra and Rey (2024) use discrete time, which allows them to interpret

value-at-risk literally: intermediaries face a limit on the probability of negative equity returns or

failure. My continuous-time framework interprets the constraint as a limit on the instantaneous

variance of returns, for which I provide a heuristic derivation.
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Empirically, Coimbra, Kim, and Rey (2022) estimate value-at-risk parameters from bank bal-

ance sheet data and find substantial heterogeneity in cross-section. Barbiero, Bräuning, Joaquim,

and Stein (2024) find that changes in value-at-risk limits of dealers impact currency returns. FX

market is highly intermediated and depends on a concentrated industry of large dealers. Using

regulatory data, Barbiero, Bräuning, Joaquim, and Stein (2024) find rather long-lived effects of

value-at-risk limit tightenings of individual dealers. Bräuning and Stein (2024) find that limit

changes also affect the functioning of the treasury markets.

A large set of models rely on constraints related to value-at-risk. Examples include Gromb

and Vayanos (2002) and Gromb and Vayanos (2018), where arbitrageurs face financial constraints

that disallow negative equity. This can be interpreted as setting a zero limit on value at risk.

Vayanos (2004) incorporates performance-based liquidation into a model of fund management.

End investors liquidate their fund holdings with a probability tied to returns. Fund managers

are concerned about liquidation, and these concerns affect their risk-taking in a way similar to a

value-at-risk penalty. Vayanos and Vila (2021), Gourinchas, Ray, and Vayanos (2022), Ray (2019),

Kamdar and Ray (2024), and Greenwood, Hanson, Stein, and Sunderam (2023) endow arbitrageurs

with mean-variance preferences, mentioning that this can capture value-at-risk constraints in re-

duced form. I operationalize this conjecture in a fully dynamic setup.

Kekre, Lenel, and Mainardi (2024) extend Vayanos and Vila (2021) by making arbitrageurs

infinitely-lived agents with power utility. Abritrageurs’ wealth has a positive duration in equilib-

rium, so positive interest rate shocks lead to an increase in term premia. This resolves a conflict

between the data and the baseline model of Vayanos and Vila (2021), where term premia fall

following contractionary monetary shocks. Portfolio choice in Kekre, Lenel, and Mainardi (2024)

includes a hedging term that complicates computations. They show that it disappears in the limit

of infinite impatience and focus on this case for simplicity. Value-at-risk constraints provide an

alternative way to eliminate hedging motives.

My foundation for the value-at-risk constraint is related to a large literature on robust control

and model misspecification. The classical reference for this framework is Hansen and Sargent

(2001). They clarify the link between the maxmin decision rules of Gilboa and Schmeidler (1989)

and economic applications of robust control, which typically adopt a “penalty” approach to model

misspecification. Anderson, Hansen, and Sargent (2003) and Hansen, Sargent, Turmuhambetova,

andWilliams (2006) relate and compare different ways to apply robust control. A recent application

of robust portfolio choice in macro-financial models is Hansen, Khorrami, and Tourre (2024). My

setup falls into this long tradition. The main difference is that I separate model misspecification

for returns and aggregate states. The agent explores alternative probability measures for shocks

driving excess returns but ignores the implications of these alternatives for her views on aggregate

states. This allows me to eliminate hedging motives and reduce portfolio choice to mean-variance,
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breaking away from Kreps and Porteus (1978) and Duffie and Epstein (1992).

My sovereign default application is related to Grosse-Steffen and Podstawski (2016), Pouzo

and Presno (2016), Coimbra (2020), and Roch and Roldán (2023). Pouzo and Presno (2016) and

Roch and Roldán (2023) use lenders with robust choice in their models. These models successfully

account for the fact that spreads on sovereign bonds are too high and volatile to be explained by

historical default probabilities, as documented by Aguiar, Chatterjee, Cole, and Stangebye (2016).

Grosse-Steffen and Podstawski (2016) introduce ambiguity about borrower’s productivity for a

similar purpose. Coimbra (2020) directly models lenders as risk-neutral banks with a value-at-risk

constraint. When default risk is low and the constraint is slack, banks hold the total stock of debt.

Spreads only incorporate expected haircuts in the case of default. When the default risk is high,

the constraint binds, and households pick up the residual supply. This increases spreads because

households are risk-averse. A similar mechanism is at work in Schneider (2023), where risk-averse

households and risk-neutral intermediaries with a financial constraint from Gertler and Kiyotaki

(2015) trade bonds of multiple maturities.

Another closely related paper is Tourre (2017). He endows lenders with an exogenous stochastic

discount factor to price a cross-section of sovereign bonds. His environment produces a time-varying

global risk-free rate and common variation in sovereign risk premia, while recursive preferences

deliver high and volatile spreads. My setup uses exogenous shocks to risk tolerance as a driver of

interest rates and spreads, which is an alternative to an exogenously specified SDF. My environment

shares its use of continuous time with Aguiar, Amador, Farhi, and Gopinath (2015), Nuño and

Thomas (2016), Aguiar and Amador (2020), Lorenzoni and Werning (2019), and Bornstein (2020).

Compared to these models, my application is massively simplified. I add global risk tolerance as a

state variable but strip out all interesting dynamics of default decisions to maximize tractability.

My borrowers are risk-neutral, there is no punishment for default, and debt maturity is infinite.

Default decisions are essentially exogenous. This allows me to derive a simple two-dimensional

PDE for bond prices in a fully closed model. I can then easily compute the interest rate as a

function of the global risk tolerance and extract common components from sovereign spreads,

accounting for both default and interest rate risk.

Bai, Kehoe, and Perri (2019) and Morelli, Ottonello, and Perez (2022) study the transmission

of global shocks in models with a cross-section of sovereign bonds. Bai, Kehoe, and Perri (2019)

focus on long-run risk with two components: one in emerging markets that issue defaultable bonds

and one in advanced economies that buy them. The long-run risk component in emerging markets

induces common variation in spreads through anticipation of future default, affecting the quantity

of risk. The component coming from advanced economies affects the price of risk through investors’

desire to save in anticipation of slow growth. My application completely shuts down aggregate

shocks originating in the issuing countries and attacks the price of risk directly through investros’
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preferences. The mechanism in Morelli, Ottonello, and Perez (2022) operates through the net

worth of global intermediaries, who are the sole investors in sovereign bonds. In my application,

the shock hits effective risk tolerance instead, which has similar effects because risk tolerance

always enters pricing equations in tandem with net worth. Morelli, Ottonello, and Perez (2022)

also show empirical evidence on the impact of investor net worth of sovereign spreads, finding

substantial common variation that is driven by the balance sheets of global banks.

Finally, there is a long literature in finance analyzing value-at-risk constraints in portfolio

choice. Basak and Shapiro (2001) and Berkelaar, Cumperayot, and Kouwenberg (2002) analyze

equilibrium consequences of the presence of value-at-risk-constrained agents for asset prices. Sen-

tana (2001) conceptualizes iso-value-at-risk curves by analogy with iso-Sharpe curves in assets

space. Yiu (2004) derives a dynamically imposed constraint, which ends up resembling the con-

straint in Danielsson, Shin, and Zigrand (2012) with a standard deviation of returns instead of

variance. Methodological literature includes Noyan and Rudolf (2013), Bernard, Rüschendorf, and

Vanduffel (2017), Pirvu (2007), Krokhmal, Palmquist, and Uryasev (2002), Alexander and Baptista

(2003), Alexander and Baptista (2008), Cuoco, He, and Isaenko (2008), and many others.

7 Conclusion

I describe a version of the value-at-risk constraint that generates mean-variance portfolios when

investors maximize log utility and excess returns are driven by diffusions. I provide a foundation

for this constraint through a version of robustness concerns, suggesting an interpretation of shocks

to risk limits that does not depend on changing regulation. I then show aggregation properties

of the value-at-risk constraint. Prices of risky assets and the risk-free rate depend on the wealth

distribution through a single scalar: the average value-at-risk multiplier weighted with wealth

shares, which can be interpreted as aggregate effective risk tolerance. Pricing equations for risky

assets look like standard risk-neutral HJB equations with a single risk correction term. Wealth

shares of investors have the same loadings on the shocks, scaled by their leverage minus one, where

each investor’s leverage is her value-at-risk multiplier divided by the wealth-weighted average.

The practicality of the value-at-risk constraints stems from their ability to shut down hedg-

ing motives. While convenient, this understandably cripples the model’s empirical performance.

Without hedging motives, the model will have a limited handle on the co-movement between the

marginal value of wealth and other economic variables. A more alarming implication of optimal

choice under value-at-risk, which really originates in log utility, is that price-dividend ratios tend

to be stable. With a single risky asset, they are simply constant. This suggests that applications

of the setup presented above should be chosen carefully because value-at-risk clearly gravitates to

the simplicity side of the simplicity-precision trade-off.
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A Proofs

Proof of Proposition 2.

Take the recursive form of equation (1) with the new budget constraint including τ(x). Let V (w, x)

be the value. The HJB equation is

ρV (w, x) = max
c,θ

ρ log(c) + (r(x)w − c+ wθ′µR(x))Vw(w, x)

+
(θ′σR(x)− τ(x)′)(σR(x)

′θ − τ(x))

2
w2Vww(w, x) + wθ′σR(x)σX(x)

′Vwx′(w, x)

+ µX(x)
′Vx′(w, x) +

1

2
tr[σX(x)

′Vxx′(w, x)σX(x)] (A.1)

s.t. θ′σR(x)σR(x)
′θ ≤ γθ′µR(x) (A.2)

Like in the proof of Proposition 1, guess and verify the solution to equation (A.1) to be V (w, x) =

log(w) + η(x). Again, the consequences are that Vwx′(w, x) = 0 and that Vx(w, x) and Vxx′(w, x)

are functions of x only: Vx(w, x) = ηx(x) and Vxx′(w, x) = ηxx′(x). Consumption is still a constant

fraction of wealth: c = ρw.

Moving to portfolio choice, let ξ(x,w) be the multiplier on equation (A.2). The first-order

condition with respect to θ is now

θ =
1 + γξ(w, x)

1 + 2ξ(w, x)
[σR(x)σR(x)

′]−1µR(x) +
1

1 + 2ξ(w, x)
[σR(x)σR(x)

′]−1σR(x)τ(x)

Now use the fact that τ(x) = γζ(x)σR(x)
′[σR(x)σR(x)

′]−1µR(x):

θ =
1 + γξ(w, x) + γζ(x)

1 + 2ξ(w, x)
[σR(x)σR(x)

′]−1µR(x)

Suppose the constraint is slack and ξ(w, x) = 0. Then,

θ = (1 + ζ(x)γ)[σR(x)σR(x)
′]−1µR(x)

Plug this into equation (A.2) to see that slackness is equivalent to

1 + ζ(x)γ < γ

Alternatively, ζ(x) < 1− 1/γ. If ζ(x) > 1− 1/γ, the constraint binds, and

1 + γξ(w, x) + γζ(x)

1 + 2ξ(w, x)
= γ

1



Portfolio choice in this case is hence the same as without taxes:

θ = γ[σR(x)σR(x)
′]−1µR(x)

The tax vector happens to generate the same exposure to shocks as a share ζ(x) of the optimal

portofolio, as designed: τ(x) = ζ(x)σR(x)
′θ(x). The equation that the rest of investor’s value

function η(x) solves changes to

ρη(x) = ρ log(ρ) + r(x)− ρ+
2γ − (1− ζ(x))2γ2

2
µR(x)

′[σR(x)σR(x)
′]−1µR(x)

+ µX(x)
′ηx′(x) +

1

2
tr[σX(x)

′ηxx′(x)σX(x)]

with appropriate boundary conditions. □

Proof of Proposition 4.

Start with writing down excess returns in matrix form using prices and dividends only. The vector

of excess returns dRt = µR(xt)dt+ σR(xt)dZt is

dRt ≡ D(p(xt))
−1[µp(xt) + y(xt)− r(xt)p(xt)]dt+D(p(xt))

−1σp(xt)dZt (A.3)

Here D(p(xt)) is a diagonal matrix with p(xt) on the main diagonal and zeros everywhere else.

Expected excess returns on each asset j consist of capital gains [µp(xt)]j/[p(xt)]j and dividend

yield [y(xt)]j/[p(xt)]j over and above the risk-free rate r(xt). The loadings of excess returns on

the shocks are the loadings of capital gains [σp(xt)]·j/[p(xt)]j only.

Portfolio choice of every agent i is

θit = γit[σR(xt)σR(xt)
′]−1µR(xt) (A.4)

Multiplying this by wit, summing across i, and using the market clearing condition for each asset,

D(p(xt))s =
∑n

i=1
γitwit · [σR(xt)σR(xt)′]−1µR(xt)

Multiply both sides by σR(xt)σR(xt)
′ on the left:

σR(xt)σR(xt)
′D(p(xt))s =

∑n

i=1
γitwit · µR(xt)

Using the definition of Γt and the fact that total wealth is p(xt)
′s,

σR(xt)σR(xt)
′D(p(xt))s = Γt · p(xt)′s · µR(xt) (A.5)

2



This can be reorganized by usingequation (A.3):

µp(xt) + y(xt)− r(xt)p(xt) =
1

Γt · p(xt)′s
· σp(xt)σp(xt)′s

This is equation (11). Multiplying this by s′ on the left,

s′µp(xt) + s′y(xt)− r(xt)s
′p(xt) =

1

Γt

· s
′σp(xt)σp(xt)

′s

p(xt)′s

Using the fact that the total consumption s′y(xt) is a fraction ρ of total wealth s′p(xt), divide

both sides by s′p(xt) to get

s′µp(xt)

s′p(xt)
+ ρ− r(xt) =

1

Γt

· s
′σp(xt)σp(xt)

′s

(p(xt)′s)2

Reorganizing,

r(xt) = ρ+
s′µp(xt)

s′p(xt)
− 1

Γt

· |σp(xt)
′s|2

(p(xt)′s)2

This is equation (12).

To obtain total leverage λit of investor i, use equation (A.4) for portfolio choice:

λit = γit · [σR(xt)σR(xt)′]−1µR(xt)1k

The market clearing condition for risk-free bonds implies

0 =
∑n

i=1
wit(1− λit) =

∑n

i=1
wit −

∑n

i=1
γitwit · [σR(xt)σR(xt)′]−1µR(xt)1k

Dividing by total wealth,

1 = Γt · [σR(xt)σR(xt)′]−1µR(xt)1k

Plugging this back into the expression for leverage,

λit =
γit
Γt

To get the expression for holdings {hijt}, notice that hijt = θijtwit/pjt, which means

hijt = γitwit · [D(p(xt))[σR(xt)σR(xt)
′]−1µR(xt)]j

3



For every j, holdings hijt are proportional to γitwit with a common j-specific coefficient of propor-

tionality. Since holdings sum to sj,

hijt = sj ·
γitwit∑n
i=1 γitwit

= sj ·
γitνit
Γt

= sjνitλit

The last remaining result to establish is equation (13) for the dynamics of wealth shares. Start

with using equation (A.5) to replace µR(xt) in equation (A.4):

θit =
γit

Γt · p(xt)′s
·D(p(xt))s =

λit
p(xt)′s

·D(p(xt))s

This implies

θ′
itµR(xt) =

λits
′D(p(xt))σR(xt)σR(xt)

′D(p(xt))s

Γt(p(xt)′s)2
=
λits

′σp(xt)σp(xt)
′s

Γt(p(xt)′s)2
=
λit
Γt

· |σp(xt)
′s|2

(p(xt)′s)2

θ′
itσR(xt) = λit ·

s′σp(xt)

p(xt)′s

Here I used the fact that D(p(xt))σR(xt) = σp(xt). The dynamics of individual wealth are

dwit

wit

= (r(xt)− ρ)witdt+ witθ
′
itµR(xt)dt+ witθ

′
itσR(xt)dZt

= (r(xt)− ρ)witdt+
λitwit

Γt

· |σp(xt)
′s|2

(p(xt)′s)2
dt+ λitwit ·

s′σp(xt)

p(xt)′s
dZt

Summing this across i and denoting the total wealth by wt,

dwt = (r(xt)− ρ)wtdt+
wt

Γt

· |σp(xt)
′s|2

(p(xt)′s)2
dt+ wt ·

s′σp(xt)

p(xt)′s
dZt

Here I use the fact that the average leverage weighted with wealth shares is one:∑n

i=1
λitwit =

∑n

i=1
λitνitwt =

∑n

i=1

γitνit
Γt

wt = wt

Now consider the dynamics of νit = wit/wt:

dνit = νit

(
dwit

wit

− dwt

wt

+
(dwt)

2

w2
t

− dwt

wt

dwit

wit

)
= νit

(
λit − 1

Γt

· |σp(xt)
′s|2

(p(xt)′s)2
dt+ (λit − 1) · s

′σp(xt)

p(xt)′s
dZt + (1− λit) ·

|σp(xt)′s|2

(p(xt)′s)2
dt

)
= νit(λit − 1) ·

[
1− Γt

Γt

· |σp(xt)
′s|2

(p(xt)′s)2
dt+

s′σp(xt)

p(xt)′s
dZt

]

4



Realizing that s′σp(xt) = σw(xt) and p(xt)
′s = wt completes the proof. □

Proof of Proposition 5.

Denote the total wealth in the economy by wt and the wealth of the less constrained investor by

wt. The evolution of her wealth share νt = wt/wt is

d

(
wt

wt

)
=
dwt

wt

− wtdwt

w2
t

+
wtdw

2
t

w3
t

− dwtdwt

w2
t

= νt

(
dwt

wt

− dwt

wt

+
dw2

t

w2
t

− dwt

wt

dwt

wt

)
The evolution of wt and wt is

dwt

wt

=

(
µ− xt + γ

x2t
σ2

)
dt+ γ

xt
σ
dZt

dwt

wt

= µdt+ σdZt

The second equation follows from ρwt = yt, which is the consumption good market clearing

condition. Plugging these into the evolution of νt,

dνt = νt

(
σ2 − xt + γ

x2t
σ2

− γxt

)
dt+ νt

(
γ
xt
σ

− σ
)
dZt

= νt
(γxt − σ2)(xt − σ2)

σ2
dt+ νt

γxt − σ2

σ
dZt

Invert xt = σ2/Γt = σ2/(νtγ + (1− νt)γ) to express wealth shares as functions of xt:

νt =
σ2 − γxt
(γ − γ)xt

νt =
γxt − σ2

(γ − γ)xt

Plugging this,

dνt = νt(1− νt)
(γ − γ)(xt − σ2)xt

σ2
dt+ νt(1− νt)

(γ − γ)xt
σ

dZt

Using xt = σ2/(νtγ + (1− νt)γ) again,

dνt =
1− νtγ − (1− νt)γ

(νtγ + (1− νt)γ)
2 · νt(1− νt)σ

2dt+
γ − γ

νtγ + (1− νt)γ
· νt(1− νt)σdZt

This proves the first part of the proposition.

5



To see the second part, use Itô’s lemma on xt = σ2/Γt = σ2/(νtγ + (1− νt)γ):

dxt = − σ2(γ − γ)

(νtγ + (1− νt)γ)
2dνt +

σ2(γ − γ)2

(νtγ + (1− νt)γ)
3dν

2
t = −(γ − γ)x2t

σ2
dνt +

(γ − γ)2x3t
σ4

dν2t

The drift and volatility of νt expressed as functions of xt are

µν(ν(xt)) =
(σ2 − γxt)(γxt − σ2)(xt − σ2)

(γ − γ)σ2xt

σµ(ν(xt)) =
(σ2 − γxt)(γxt − σ2)

(γ − γ)σxt

Using this,

µx(xt) =
(σ2 − γxt)

2(γxt − σ2)2xt
σ6

− (σ2 − γxt)(γxt − σ2)(xt − σ2)xt
σ4

=
(σ2 − γxt)(γxt − σ2)xt

σ6
((σ2 − γxt)(γxt − σ2)− (xt − σ2)σ2)

=
(σ2 − γxt)(γxt − σ2)x2t

σ6
(σ2(γ + γ − 1)− γγxt)

σx(xt) = −(σ2 − γxt)(γxt − σ2)xt
σ3

This proves that dxt/xt evolves as in the statement of the proposition. □

Proof of Proposition 6.

The tax changes the process for individual wealth to the following:

dwt

wt

=

(
µ− xt + γ

x2t
σ2

)
dt+

(
1

2
− νt

)
τ
√
νt(1− νt)dt+ γ

xt
σ
dZt

There is one additional term in the drift of wt, which translates into one additional term in the

drift of νt. Since this term already only depends on νt, it does not require additional simplification:

dνt =
1− νtγ − (1− νt)γ

(νtγ + (1− νt)γ)
2 · νt(1− νt)σ

2dt+
τ(1− 2νt)

2

√
νt(1− νt)dt

+
γ − γ

νtγ + (1− νt)γ
· νt(1− νt)σdZt

To see the second part of the result, notice that the relationship between dxt and dνt has not

changed with the addition of the tax:

dxt = −(γ − γ)x2t
σ2

dνt +
(γ − γ)2x3t

σ4
dν2t

6



The only thing that changes is µν(ν(xt)), which is reflected in

µν(ν(xt)) =
(σ2 − γxt)(γxt − σ2)(xt − σ2)

(γ − γ)σ2xt
+
τ(1− 2ν(xt))

2

√
ν(xt)(1− ν(xt))

=
(σ2 − γxt)(γxt − σ2)(xt − σ2)

(γ − γ)σ2xt
− τ(2σ2 − (γ + γ)xt)

√
(γxt − σ2)(σ2 − γxt)

2x2t (γ − γ)2

Hence, the drift of xt changes to

µx(xt) =
(σ2 − γxt)(γxt − σ2)x2t

σ6
(σ2(γ + γ − 1)− γγxt)

+ τ
√

(γxt − σ2)(σ2 − γxt)
2σ2 − (γ + γ)xt

2σ2

This completes the proof. □

Proof of Proposition 7.

The recursive representation of a sovereign’s value is

ρv(x) =


x− κ+ µxv′(x) +

σ2

2
x2v′′(x) for x ≥ x̂

µxv′(x) +
σ2

2
x2v′′(x) for x ≤ x̂

(A.6)

Optimality requires that v(·) be continuous and twice differentiable at x̂.

The solution on [x̂,∞) has a homogeneous and a non-homogeneous parts:

v(x) =
x

ρ− µ
− κ

ρ
+ βxζ

Here ζ is the negative root of the characteristic polynomial for equation (A.6):

ζ =
σ2 − 2µ−

√
(2µ− σ2)2 + 8ρσ2

2σ2

On [0, x̂], there is only the homogeneous part:

v(x) = βxζ

The surviving root of the characteristic polynomial on this segment is positive:

ζ =
σ2 − 2µ+

√
(2µ− σ2)2 + 8ρσ2

2σ2

There are three smoothness conditions and three unknonws: x̂, ζ, and ζ.

7



The smoothness conditions are value matching, smooth pasting, and super contact:

x̂

ρ− µ
− κ

ρ
+ βx̂ζ = βx̂ζ (A.7)

1

ρ− µ
+ ζβx̂ζ−1 = ζβx̂ζ−1 (A.8)

(ζ − 1)ζβx̂ζ−2 = (ζ − 1)ζβx̂ζ−2 (A.9)

Multiplying the equation (A.8) by x̂, subtracting it from equation (A.7), and using equation (A.9)

for elimination,

βx̂ζ =
κ

ρ
· ζ

(1− ζ)(ζ − ζ)

βx̂ζ =
κ

ρ
· ζ

(1− ζ)(ζ − ζ)

Using equation (A.7) again leads to

x̂ = κ · ρ− µ

ρ
· ζζ

(ζ − 1)(ζ − 1)

For x̂ > 0, it is necessary and sufficient that ζ > 1, which is achieved when ρ > µ.

Since x̂ decreases in ζ, which itself decreases in µ, x̂ increases in µ. Since µ > µ,

x̂

κ
>
ρ− µ

ρ
·
(
√
(2µ− σ2)2 + 8ρσ2 − 2µ+ σ2)(

√
(2µ− σ2)2 + 8ρσ2 + 2µ− σ2)

(
√
(2µ− σ2)2 + 8ρσ2 − 2µ− σ2)(

√
(2µ− σ2)2 + 8ρσ2 + 2µ+ σ2)

=
ρ− µ

ρ
· 8ρσ2

(2µ− σ2)2 + 8ρσ2 − (2µ+ σ2)2
= 1

This proves that x̂ > κ.

Next, the density g(·) corresponding to the invariant distribution of x solves

(µ(x)g(x))′ =
σ2

2
(x2g(x))′′

Here µ(x) = (µ+ (µ− µ)1{x < x̂}). Taking the derivatives,

σ2

2
g′′(x)x2 + (2σ2 − µ)g′(x)x+ (σ2 − µ)g(x) = 0
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for x ≥ x̂. On [0, x̂], g(·) solves the same equation with µ instead of µ. The solution is

g(x) = βxξ1{x ≥ x̂}+ βxξ1{x < x̂}

Here ξ and ξ are the roots of the characteristic polynomials with the right sign: ξ < 0 and ξ > 0:

ξ =
µ− 2σ2 −

√
(µ− σ2)2 + σ4

σ2

ξ =
µ− 2σ2 +

√
(µ− σ2)2 + σ4

σ2

It holds that ξ < −1 whenver σ > 0.

The density must be continuous at x = x̂ and it must integrate to one. These conditions read

βx̂ξ = βx̂ξ

βx̂ξ+1

ξ + 1
− βx̂ξ+1

ξ + 1
= 1

Combining them,

β =
(1 + ξ)(1 + ξ)

ξ − ξ
· x̂−1−ξ

β =
(1 + ξ)(1 + ξ)

ξ − ξ
· x̂−1−ξ

The share ∆̂ of firms in default is the integral of the density up to x̂:

∆̂ =
βx̂ξ+1

ξ + 1
=
ξ + 1

ξ − ξ
=

√
(µ− σ2)2 + σ4 − µ+ σ2√

(µ− σ2)2 + σ4 − µ+
√
(µ− σ2)2 + σ4 + µ

This completes the proof. □

Proof of Proposition 8.

Integrating equation (15) pre-multiplied by g(x), the invariant density of x,

r(γ) ·
∫
p(x, γ)g(x)dx = κ · (1− ∆̂) +

∫ [
px(x, γ)µ(x) + pxx(x, γ)

σ2x2

2

]
g(x)dx

+ µγ(γ)∂γ

(∫
p(x, γ)g(x)dx

)
+
σγ(γ)

2

2
∂γγ

(∫
p(x, γ)g(x)dx

)
− ρ

γ(κ− π)
·
∫ [

(px(x, γ)σx)
2 + (pγ(x, γ)σγ(γ))

2
]
g(x)dx
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The fact that the average price equals total wealth, which is to (κ−π)/ρ, means that the derivatives

with respect to γ in the second line are zero. Integrating the first line by parts,

r(γ) · κ− π

ρ
= = κ · (1− ∆̂) +

∫ [ 1
2
(σ2x2g(x))′′ − (µ(x)g(x))′︸ ︷︷ ︸

=0

]
p(x)dx

− ρ

γ(κ− π)
·
∫ [

(px(x, γ)σx)
2 + (pγ(x, γ)σγ(γ))

2
]
g(x)dx

The fact that the expression under the integral sign is zero follows from the fact that g(·) is an

invariant distribution. Using π = κ · ∆̂ and rearranging again leads to equation (16):

r(γ) = ρ− ρ2

γ(κ− π)2

∫ [
(px(x, γ)σx)

2 + (pγ(x, γ)σγ(γ))
2
]
g(x)dx

This completes the proof. □
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